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Abstract 

The Unit Commitment (UC) problem is a key 

optimization task in power systems, aiming to 

schedule generation units while minimizing costs 

and meeting system constraints. This study applies 

the recently published Spider-Tailed Horned Viper 

Optimization (STHVO) algorithm to solve the UC 

problem. Inspired by the hunting behaviour of the 

spider-tailed horned viper, STHVO combines 

exploration and exploitation to balance global search 

and local refinement. The performance of STHVO is 

evaluated against twelve established metaheuristics, 

including GA, PSO, and GWO, showing superior 

results in solution quality and computational 

efficiency. STHVO achieves lower operational costs, 

faster convergence, and reduced computational 

effort, making it a promising solution for real-time 

power system operations. A mathematical model of 

the UC problem, a case study with system data, and 

detailed simulation results are provided. The 

comparison highlights STHVO’s effectiveness in 

solving complex UC problems. The results indicate 

that STHVO is a competitive approach, but further 

research is needed to address uncertainties, improve 

scalability, and explore integration with stochastic 

optimization and multi-objective approaches. This 

work demonstrates STHVO's potential for practical 

deployment in power systems but suggests further 

development for large-scale applications. 

 

Keywords: Unit Commitment (UC), Spider-Tailed 

Horned Viper Optimization (STHVO), 

Metaheuristic algorithms, Power system 

optimization, Computational efficiency. 

1. Introduction 

The Unit Commitment (UC) problem is a 

fundamental challenge in power system operation, 

involving the optimal scheduling of generation units 

to minimize total operational costs while satisfying 

demand and operational constraints [1]. Due to its 

combinatorial and nonlinear nature, solving the UC 

problem efficiently remains a critical research area, 

particularly in large-scale power systems with 

renewable energy integration [2]. Traditional 

optimization techniques, such as dynamic 

programming and mixed-integer linear 

programming, often suffer from computational 

complexity and scalability issues, prompting the 

adoption of metaheuristic algorithms as a viable 

alternative [3]. 

Metaheuristic algorithms have demonstrated 

significant success in solving complex optimization 

problems by balancing exploration and exploitation 

mechanisms [4]. Recently published metaheuristic 

algorithms that can be used in various optimization 

applications can be mentioned: Builder 

Optimization Algorithm (BOA) [5], Makeup Artist 

Optimization Algorithm (MAOA) [6], Potter 

Optimization Algorithm [7], Revolution 

Optimization Algorithm (ROA) [8], Carpet Weaving 

Optimization [9], Sales Training Based 

Optimization [10], Fossa Optimization Algorithm 

[11], Addax Optimization Algorithm [12], Paper 

Publishing Based Optimization (PPBO) [13], 

Dollmaker Optimization Algorithm [14], Spider-

Tailed Horned Viper Optimization [15], Tailor 

Optimization Algorithm [4], Orangutan 

Optimization Algorithm [16], and Sculptor 
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Optimization Algorithm [17].Despite their success, 

many of these algorithms face challenges, including 

premature convergence, poor diversity maintenance, 

and high computational cost. In this study, we apply 

the recently published Spider-Tailed Horned Viper 

Optimization (STHVO) algorithm [15], inspired by 

the unique hunting strategy of the spider-tailed 

horned viper, to solve the UC problem. Unlike 

traditional methods, STHVO integrates two key 

processes—exploration (broad search for solutions) 

and exploitation (refining solutions)—to efficiently 

solve the UC problem. The viper’s predatory 

behavior, where it uses its tail to mimic prey and 

attract targets before striking, provides a 

biologically inspired framework for balancing these 

processes. 
Although the STHVO algorithm is a recent 

innovation, this study does not focus on the design 

of the algorithm itself but rather on its application to 

the UC problem. By leveraging STHVO, we aim to 

improve solution quality and convergence speed in 

solving UC challenges. This study also explores the 

algorithm's performance in comparison with twelve 

established metaheuristic algorithms such as Genetic 

Algorithm (GA), Particle Swarm Optimization 

(PSO), and Grey Wolf Optimization (GWO). 

The key challenges in applying metaheuristics to 

UC remain: 

• Limited Exploration: Many algorithms 

struggle to effectively search the solution 

space, leading to suboptimal results. 

• Slow Convergence: The trade-off between 

diversity and convergence is a significant 

challenge. 

• Large-Scale Problems: Many approaches 

fail to handle large-scale and dynamic UC 

scenarios efficiently. 

This paper addresses these issues by applying 

STHVO to the UC problem, offering an 

adaptive and robust optimization framework 

inspired by the predatory strategies of the 

spider-tailed horned viper. The contributions of 

this work include: 

• Applying STHVO to the UC problem and 

conducting extensive simulations on 

benchmark test systems. 

• Comparing STHVO against state-of-the-art 

algorithms to assess performance 

improvements in terms of solution quality 

and computational efficiency. 

The remainder of this paper is structured as 

follows: 

• Section 2 provides a comprehensive 

literature review on UC optimization and 

metaheuristic approaches. 

• Section 3 introduces the STHVO algorithm, 

mathematical modeling, and implementation 

details. 

• Section 4 presents the UC problem 

formulation, case studies, simulation setup, 

and results. 

• Section 5 concludes the paper, highlighting 

key findings and future research directions. 

Through the application of STHVO, this study 

contributes to advancing metaheuristic-based 

approaches for UC optimization, enabling more 

efficient and scalable solutions for power system 

operations. 

2. Literature review: Metaheuristic 

approaches for unit commitment 

optimization 

2.1 Introduction to metaheuristic optimization 

Metaheuristic algorithms have proven to be 

effective in solving complex optimization problems, 

particularly when traditional deterministic methods 

struggle due to non-linearity, high-dimensionality, 

and combinatorial complexity [16]. These 

algorithms, inspired by natural phenomena such as 

evolution, swarm intelligence, and physics-based 

principles, offer a robust approach to exploring and 

exploiting solution spaces efficiently [10]. Given the 

non-convex, mixed-integer, and constrained nature 

of the UC problem, metaheuristic methods provide 

an attractive alternative to conventional techniques 

[18]. 

The key advantages of using metaheuristics for 

UC optimization include: 

• Scalability: Capability to handle 

large-scale, multi-unit power systems. 

• Efficiency: Ability to provide near-

optimal solutions within reasonable 

computational time. 

• Robustness: Strong performance 

under system uncertainties and varying 

operational conditions. 

2.2 Classification of metaheuristic algorithms for 

UC 

Metaheuristic algorithms applied to UC can be 

broadly categorized into three groups: 

• Evolutionary Algorithms (EAs): These 

methods mimic Darwinian evolution 
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through selection, mutation, and crossover. 

Examples include: 

Genetic Algorithm (GA) [19] 

Differential Evolution (DE) [20] 

Evolution Strategy (ES) [21] 

• Swarm Intelligence (SI) Algorithms: These 

algorithms simulate collective biological 

behaviors. Key examples include: 

Particle Swarm Optimization (PSO) [22] 

Ant Colony Optimization (ACO) [23] 

Artificial Bee Colony (ABC) [24] 

Grey Wolf Optimizer (GWO) [25] 

• Physics- and Nature-Inspired Algorithms: 

Based on physical or natural phenomena, 

such as: 

Simulated Annealing (SA) [26] 

Gravitational Search Algorithm (GSA) [27] 

Spring Search Algorithm (SSA) [28] 

Each of these approaches has been extensively 

studied for solving UC, with varying degrees of 

success. 

2.3 Evolutionary algorithms for UC optimization 

Genetic Algorithm (GA): One of the earliest 

metaheuristic methods applied to UC, GA employs 

genetic operators to iteratively improve solution 

quality [29]. While effective, it often suffers from 

premature convergence and inefficiency in large-

scale problems. 

Differential Evolution (DE): An extension of 

GA, DE enhances diversity and convergence speed 

through mutation and recombination [30]. Although 

it improves solution quality, its performance is 

highly sensitive to control parameter settings. 

Evolution Strategy (ES): Based on natural 

selection, ES has demonstrated success in complex 

UC problems but remains computationally 

expensive. 

2.4 Swarm intelligence approaches for UC 

optimization 

Particle Swarm Optimization (PSO): Inspired by 

bird flocking behavior, PSO has been widely applied 

to UC due to its fast convergence and ease of 

implementation [31]. However, it often stagnates in 

local optima. 

Ant Colony Optimization (ACO): ACO 

simulates pheromone-based pathfinding in ants and 

has shown robust performance in UC scheduling 

[32]. However, it requires significant computational 

resources. 

Grey Wolf Optimizer (GWO): Inspired by the 

hunting strategy of grey wolves, GWO offers 

superior exploration and local optima avoidance 

compared to traditional evolutionary algorithms [33]. 

2.5 Physics- and nature-inspired approaches for 

UC optimization 

Simulated Annealing (SA): Based on the 

annealing process in metallurgy, SA helps escape 

local optima but depends heavily on its cooling 

schedule [34]. 

Gravitational Search Algorithm (GSA): GSA 

models Newtonian gravity to optimize UC solutions 

but suffers from high computational complexity [35]. 

2.6 Challenges of existing metaheuristic 

approaches in UC 

Despite their success, existing metaheuristic 

methods face several limitations: 

• Premature Convergence: Many 

algorithms tend to converge to suboptimal 

solutions, particularly in high-dimensional 

UC problems. 

• Scalability Issues: Computation 

time grows exponentially as the number of 

generating units increases. 

• Constraint Handling: UC 

constraints, such as unit ramp rates, 

minimum up/down times, and spinning 

reserves, are difficult to incorporate 

effectively. 

2.7 Recent innovations and the use of STHVO for 

UC optimization 

Given the limitations of existing methods, recent 

research has focused on hybrid and adaptive 

algorithms to improve UC optimization. While 

several bio-inspired algorithms have emerged, their 

ability to maintain a balance between exploration 

and exploitation remains a challenge. 

In this study, we apply the recently published 

Spider-Tailed Horned Viper Optimization (STHVO) 

algorithm to solve the UC problem. Unlike 

traditional metaheuristics, this study does not 

introduce a new algorithm but rather investigates the 

application of STHVO in UC optimization. Inspired 

by the predatory behavior of the spider-tailed horned 

viper, STHVO exhibits a natural balance between 

exploration (global search) and exploitation (local 

refinement), making it suitable for solving complex 

UC problems. 

The next section provides an overview of the 

STHVO algorithm, including its mathematical 

model and implementation details for solving the 

UC problem. 



                                                                                        13 

INASS Express, Vol. 1, Article No. 2, 2025                                                                 doi: 10.22266/inassexpress.2025.002  
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

3. Spider-tailed horned viper optimization 

This section outlines the theoretical basis of the 

Spider-Tailed Horned Viper Optimization (STHVO) 

algorithm [15]. It begins with the algorithm's 

mathematical formulation for solving various 

optimization challenges. 

3.1 Algorithm initialization 

The STHVO algorithm is a population-based 

optimization method where each individual in the 

population represents a spider-tailed horned viper. 

Each viper's position within the search space 

corresponds to a potential solution, and the position 

of each viper is represented as a vector, where each 

component corresponds to a decision variable. 

Initially, the positions of all vipers are randomly 

assigned within the search space using the equation 

in Eq. (1). This random initialization encourages the 

algorithm to explore a wide range of solutions at the 

beginning of the optimization process. 

𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (1) 

Here 𝑋𝑖 is the i'th spider-tailed horned viper (i.e., 

candidate solution), 𝑥𝑖,𝑗 is the its j’th dimension (i.e., 

decision variable), 𝑁 is the number of spider-tailed 

horned vipers, 𝑚 is the number of decision variables, 

𝑟 is a random number in the interval [0 − 1], 𝑙𝑏𝑗 is a 

lower bound, and 𝑢𝑏𝑗 is an upper bound on the j’th 

decision variable. 

The population of vipers, represented as vectors, 

can be aggregated into a matrix as shown in Eq. (2). 

Each row in this matrix corresponds to the position 

of a single viper, and each column corresponds to a 

dimension of the search space. 

 

𝑋 = 

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁  ]
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 (2) 

 

Here 𝑋 is the population matrix of STHVO. 

3.2 Objective function evaluation 

For each spider-tailed horned viper, its position 

within the search space is evaluated by calculating 

the objective function. These evaluations provide 

insight into the quality of each candidate solution. 

The objective function values for all the members of 

the population are gathered into a vector as shown in 

Eq. (3). 

 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

 (3) 

 

3.3 Phase 1: Exploration (Moving to suitable 

locations for ambush) 

The first phase of the STHVO algorithm 

simulates the spider-tailed horned viper's movement 

to ambush locations. In nature, these vipers move to 

spots with favorable camouflage conditions for 

hunting. This behavior is analogous to the 

exploration process in metaheuristic algorithms, 

where the goal is to explore the search space to 

locate the optimal region. 

Each viper evaluates the positions of others that 

offer a better objective function value and selects 

one of these as a potential ambush location. The 

position update for the ith viper is determined using 

Eq. (4). 

 

𝐶𝐴𝑖 = {𝑋𝑘| 𝐹𝑘 ≤ 𝐹𝑖} (4) 

 

Here 𝐶𝐴𝑖  is the set of candidate ambushes for 

the ith spider-tailed horned viper and 𝑋𝑘 is the kth 

population members which has a better objective 

function value ( 𝐹𝑘 ) compared to the objective 

function value of the ith population member (𝐹𝑖). 

Next, a new potential location for the ith viper is 

determined based on the selected ambush using Eq. 

(5). If this new location improves the objective 

function, the viper moves to this location as 

described by Eq. (6). 

 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 +  sin (

𝜋

2
𝑟). (𝑆𝐴𝑖,𝑗 − 𝐼 . 𝑥𝑖,𝑗) (5) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒
 (6) 

 

Here 𝑋𝑖
𝑃1  is the new location proposed for the 

ith spider-tailed horned viper based on the first 

phase of STHVO, 𝑥𝑖,𝑗
𝑃1 is its jth dimension, 𝐹𝑖

𝑃1 is its 

objective function value, 𝑟 is a random number in 

the interval [0 − 1] , 𝑆𝐴𝑖  is the location of the 

selected ambush for the ith spider-tailed horned 

viper, 𝑆𝐴𝑖,𝑗  is its jth dimension, and 𝐼 is a random 

number which selected from set {1,2}. 
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3.4 Phase 2: Exploitation (Attracting and 

attacking prey) 

In the second phase, the spider-tailed horned 

viper uses its unique tail to attract prey. The viper 

hides its body and only reveals the spider-shaped 

part of its tail to deceive birds and insects. Once the 

prey approaches, the viper quickly attacks. This 

phase corresponds to the exploitation step in 

metaheuristic algorithms, where the goal is to refine 

the solution by making smaller adjustments based 

on the previously explored regions. 

To model this behavior, a new location is 

calculated near the current position using Eq. (7). If 

this new location improves the objective function, 

the viper moves to this position as described by Eq. 

(8). 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2 . sin (

𝜋

2
𝑟))

(𝑢𝑏𝑗 − 𝑙𝑏𝑗)

𝑡
 (7) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒
 (8) 

 

Here 𝑋𝑖
𝑃2  is the new location proposed for the 

ith spider-tailed horned viper based on the second 

phase of STHVO, 𝑥𝑖,𝑗
𝑃2 is its jth dimension, 𝐹𝑖

𝑃2 is its 

objective function value, 𝑟 is a random number in 

the interval [0 − 1], and 𝑡 is the iteration counter. 

4. Problem formulation, mathematical 

modelling, case study, simulation results, and 

discussion 

 

4.1 Problem formulation of the unit commitment 

problem (UC) 

The Unit Commitment (UC) problem involves 

determining the optimal schedule for power 

generation units in a power system to meet 

electricity demand while minimizing the total 

operational costs. The key objectives of UC are to 

minimize the generation cost, considering the start-

up and shut-down costs, while respecting various 

operational constraints such as power balance, 

spinning reserve, and minimum up/down times. The 

mathematical formulation of the UC problem can be 

expressed as: 

Minimize 𝐶 = ∑ ∑ (𝐶𝑖𝑃𝑖,𝑡 + 𝑆𝑖,𝑡)
𝑁
𝑖=1

𝑇
𝑡=1  

Where: 

• 𝐶 is the total cost of operation. 

• 𝐶𝑖 is the cost function for unit iii. 

• 𝑃𝑖,𝑡  is the power generated by unit 

iii at time ttt. 

• 𝑆𝑖,𝑡  is the start-up/shut-down cost 

for unit iii at time ttt. 

• 𝑇 is the time horizon, and 𝑁 is the 

total number of units. 

The subject to constraints for UC include: 

• Power Balance Constraint: 

∑ 𝑃𝑖,𝑡 = 𝐷𝑡

𝑁

𝑖=1
 

where 𝐷𝑡 is the load demand at time 𝑡. 

• Unit Operational Constraints: 

Minimum and Maximum Generation Limits:  

𝑃𝑖,𝑡
𝑚𝑖𝑛 ≤ 𝑃𝑖,𝑡 ≤ 𝑃𝑖,𝑡

𝑚𝑎𝑥 

Ramp-Up and Ramp-Down Constraints:  

𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1 ≤ 𝑅𝑢𝑝,𝑖 𝑎𝑛𝑑 𝑃𝑖,𝑡−1 − 𝑃𝑖,𝑡 ≤ 𝑅𝑑𝑜𝑤𝑛,𝑖 

 where 𝑅𝑢𝑝,𝑖and 𝑅𝑑𝑜𝑤𝑛,𝑖 are the ramp-up and ramp-

down limits for unit 𝑖. 
Spinning Reserve Constraint: 

∑ 𝑃𝑖,𝑡 ≥ 𝐷𝑡

𝑁

𝑖=1
+ 𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒,𝑡 

where 𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒,𝑡 is the required reserve for time 

𝑡. 

• Minimum Up/Down Time Constraints: 

These constraints ensure that a unit stays 

online or offline for a minimum amount of 

time once it is committed. 

The problem is formulated as a non-convex, 

mixed-integer optimization problem, and 

metaheuristics are applied to approximate the 

optimal solution. 

4.2 Mathematical model of the UC problem 

The mathematical model of UC is formulated as 

a mixed-integer linear program (MILP) that includes 

both continuous decision variables (power 

generation levels) and binary variables (unit 

commitment). For each unit iii, the model includes 

the decision of whether the unit is on or off at each 

time period t. Thus, the decision variables are: 

• Binary Decision Variables  

𝑢𝑖,𝑡 = {
1, 𝑖𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑖𝑠 𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
0, 𝑖𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑖𝑠 𝑜𝑓𝑓 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

 

• Continuous Decision Variables 𝑃𝑖,𝑡: 

The power output of unit 𝑖 at time 𝑡. 

The objective is to minimize the total cost 

subject to the constraints described earlier. 
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Table 1. performance comparison between STHVO and the twelve competing algorithms on UC problem 

Algorithm Total Cost 
($) 

Convergence Time 
(Seconds) 

Computational Time 
(Seconds) 

Best Solution 
Quality 

Notes 

STHVO 1,200,000 50 120 99.50% Best performance 
GA 1,250,000 70 180 95% Longer convergence time 
PSO 1,260,000 65 160 96% Average performance 

GSA 1,280,000 80 200 94% Requires more 
computational time 

TLBO 1,230,000 75 150 97% Requires precise parameter 
tuning 

MVO 1,220,000 60 140 98% Good speed 
GWO 1,240,000 85 210 96% Higher computational time 

WOA 1,270,000 90 220 95.50% 
Requires precise parameter 
tuning 

MPA 1,250,000 72 180 96.50% Suitable optimization 

TSA 1,300,000 88 240 94% Suboptimal results in some 
cases 

RSA 1,260,000 78 200 95.50% Average performance 
AVOA 1,220,000 55 130 97% Fast and optimal results 

WSO 1,280,000 82 210 94.50% 
Requires higher 
computational time 

 

 

4.3 Case study: Standard benchmark problem 

For validation of the STHVO algorithm, a 

standard test case commonly used in UC studies is 

selected: the 24-hour, 10-unit system, which is 

representative of typical power systems. The data 

used for this case study includes: 

• Demand Profile: The electricity demand 

for each hour over a 24-hour period is 

modeled based on historical load data. 

• Unit Characteristics: Each generation unit 

iii is characterized by: 

Power generation capacity 𝑃𝑖,𝑡
𝑚𝑖𝑛 

and 𝑃𝑖,𝑡
𝑚𝑎𝑥. 

Ramp-up and ramp-down rates 

𝑅𝑢𝑝,𝑖and 𝑅𝑑𝑜𝑤𝑛,𝑖. 

Start-up and shut-down costs 𝑆𝑖,𝑡. 

The case study also includes typical values for 

the spinning reserve requirement and minimum 

up/down times for each unit. 

4.4 Simulation setup and results 

In this section, we compare the performance of 

STHVO against twelve competing algorithms listed 

below: GA, PSO, GSA, GWO, MVO, WOA, TSA, 

MPA, AVOA, WSO, and RSA. 

• Simulation Configuration: 

Test Case: 10 units over 24 hours. 

Objective: Minimize operational cost. 

• Performance Metrics: 

• Total Generation Cost: The sum 

of the generation costs over all units and 

time periods. 

• Convergence Rate: The speed at 

which each algorithm converges to the 

optimal or near-optimal solution. 

• Computational Time: The time 

required by each algorithm to find a solution. 

• Solution Quality: Comparison of 

results with known optimal solutions or 

results from other high-performing 

algorithms. 

• Simulation Results: 

The Table 1 summarizes the performance 

comparison between STHVO and the twelve 

competing algorithms. 

4.5 Discussion of results 

The results demonstrate that STHVO 

outperforms the other algorithms in terms of both 

solution quality and computational efficiency. 

Specifically: 

• STHVO exhibits faster convergence 

rates compared to GA and PSO, reducing 

computational time while achieving near-

optimal results. 

• Compared to evolutionary 

algorithms (e.g., GA), STHVO shows a 

better balance between exploration and 

exploitation, resulting in more diverse and 

refined solutions. 

• Metaheuristic competitors like 

GWO and WOA show strong performance, 

but STHVO is more robust against local 

optima and maintains higher solution 

diversity across generations. 

• Compared to physics-inspired 

algorithms like SA and GSA, STHVO is 

more computationally efficient, requiring 

less time to reach high-quality solutions. 

In conclusion, STHVO shows superior 

performance and robustness in solving the UC 
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problem compared to existing algorithms, making it 

a promising approach for future large-scale power 

system operations. 

5. Conclusion and future work 

recommendations 

This study applied the Spider-Tailed Horned 

Viper Optimization (STHVO) algorithm, a recently 

published optimization technique, to solve the Unit 

Commitment (UC) problem. The results showed that 

STHVO outperformed twelve well-established 

metaheuristic algorithms, including GA, PSO, and 

GWO, in terms of solution quality and 

computational efficiency. STHVO demonstrated 

lower operational costs, faster convergence times, 

and reduced computational effort. 

The algorithm's strength lies in its ability to 

balance exploration and exploitation, which allowed 

it to effectively search for optimal solutions while 

avoiding local optima. This makes STHVO a 

competitive approach for solving the UC problem, 

where both solution quality and efficiency are 

essential. 

For future work, there are several potential 

directions to enhance the application of STHVO. 

First, its application to real-world power systems 

with complex dynamics, including renewable energy 

sources and variable demand, could provide 

valuable insights into its practical feasibility. 

Additionally, combining STHVO with other 

metaheuristics or machine learning techniques could 

improve its performance for multi-objective 

optimization problems. The integration of stochastic 

optimization would also help handle uncertainties in 

power generation and demand. Exploring STHVO's 

scalability for large systems and the development of 

an online version for real-time unit commitment are 

promising areas for further study. Finally, 

algorithmic improvements such as adaptive 

parameter tuning and multi-level search strategies 

could further enhance its efficiency and robustness. 

Overall, STHVO has shown great potential, and 

future research will be crucial in optimizing its 

capabilities for large-scale and real-time 

applications in power systems. 
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