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Abstract 

The optimal placement of Distributed 

Generation (DG) units is a key challenge in power 

distribution networks, directly affecting power 

losses, voltage stability, and system reliability. This 

study evaluates the effectiveness of the recently 

introduced Carpet Weaver Optimization (CWO) 

algorithm in solving the DG placement (DGP) 

problem. Inspired by the coordination between a 

carpet weaver and a map reader, CWO models their 

decision-making process to achieve an optimized 

pattern. This study presents the first application of 

CWO for determining the optimal locations and 

capacities of DG units in power networks. Extensive 

simulations are conducted on benchmark test 

systems to assess the performance of CWO in 

comparison with 12 well-established metaheuristic 

algorithms. The evaluation criteria include power 

loss minimization, voltage profile enhancement, and 

computational efficiency. The results demonstrate 

that CWO consistently outperforms all competitor 

algorithms, achieving superior convergence speed, 

solution accuracy, and stability in complex 

optimization scenarios. Statistical analyses validate 

the robustness of CWO in addressing the intricate 

nature of the DGP problem. The key contributions 

of this research include the first implementation of 

CWO in power system optimization, a 

comprehensive comparative analysis with 12 

competitive algorithms, and an in-depth assessment 

of its adaptability for solving large-scale engineering 

problems. The findings establish CWO as a highly 

efficient and promising optimization technique for 

DG placement, offering improved network 

performance and operational reliability. 
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1. Introduction 

The optimal placement of Distributed 

Generation (DG) units has become a critical 

challenge in modern power systems due to its 

significant impact on power loss reduction, voltage 

profile enhancement, and overall network reliability. 

DG units, which include renewable energy sources 

such as solar photovoltaic (PV), wind turbines, and 

small-scale gas turbines, offer an effective solution 

for reducing dependency on centralized power 

plants while improving energy efficiency and 

sustainability [1]. However, improper placement and 

sizing of DG units can lead to increased power 

losses, voltage instability, and suboptimal 

operational conditions [2]. Therefore, determining 

the optimal locations and capacities of DG units in 

power distribution networks is a crucial optimization 

problem that requires advanced computational 

techniques. 

Metaheuristic algorithms have gained 

widespread attention as powerful tools for solving 

complex optimization problems in power systems. 

These algorithms, inspired by natural and social 

phenomena, provide efficient and robust solutions to 

high-dimensional, nonlinear, and multi-objective 

optimization problems [3]. Recently published 

metaheuristic algorithms that can be used in various 

optimization applications can be mentioned: 

Perfumer Optimization Algorithm (POA) [4], 

Builder Optimization Algorithm (BOA) [5], Makeup 

Artist Optimization Algorithm (MAOA) [6], Potter 

Optimization Algorithm [7], Revolution 

Optimization Algorithm (ROA) [8], Carpet Weaving 

Optimization [9], Sales Training Based 

Optimization [10], Fossa Optimization Algorithm 

[11], Addax Optimization Algorithm [12], Paper 
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Publishing Based Optimization (PPBO) [13], 

Dollmaker Optimization Algorithm [14], Spider-

Tailed Horned Viper Optimization [15], Tailor 

Optimization Algorithm [3], Orangutan 

Optimization Algorithm [16], and Sculptor 

Optimization Algorithm [17]. Traditional 

optimization techniques, such as mathematical 

programming and exhaustive search methods, are 

often computationally expensive and impractical for 

large-scale systems [18-22]. 

In contrast, metaheuristic approaches, including 

Genetic Algorithms (GA) [23], Particle Swarm 

Optimization (PSO) [24], and Differential Evolution 

(DE) [25], have demonstrated superior performance 

in handling the DG placement (DGP) problem by 

balancing exploration and exploitation capabilities. 

This study introduces the recently developed 

Carpet Weaver Optimization (CWO) algorithm to 

address the DGP problem. CWO is a novel 

metaheuristic inspired by the intricate decision-

making process between a carpet weaver and a map 

reader, where the optimization process mimics the 

systematic weaving of patterns to achieve an 

optimal solution. The CWO algorithm has 

demonstrated promising results in various 

optimization applications, yet its performance in the 

DGP problem remains unexplored. This study aims 

to evaluate the effectiveness of CWO in determining 

the optimal placement and sizing of DG units and 

compare its performance against 12 well-established 

metaheuristic algorithms. 

The primary contributions of this study are as 

follows: 

• The first application of the CWO algorithm 

to the DGP problem in power distribution 

networks. 

• A comprehensive comparative analysis of 

CWO’s performance against 12 benchmark 

metaheuristic algorithms using multiple 

evaluation metrics. 

• An in-depth assessment of CWO’s 

efficiency in minimizing power losses, 

enhancing voltage stability, and improving 

overall system reliability. 

• Extensive simulations on standard 

benchmark test systems to validate the 

robustness and adaptability of the proposed 

approach. 

The remainder of this paper is organized as 

follows: Section 2 provides a detailed literature 

review on DG placement methods and the 

application of metaheuristic algorithms. Section 3 

presents the fundamental concepts and working 

principles of the CWO algorithm. Section 4 

formulates the DGP problem, describes the 

simulation setup, discusses the experimental results 

and comparative analysis, while Section 5 concludes 

the paper and outlines potential future research 

directions. 

2. Literature review 

The optimal placement and sizing of Distributed 

Generation (DG) units within power distribution 

networks have garnered significant attention due to 

their potential to enhance system efficiency, 

reliability, and sustainability. Metaheuristic 

algorithms, inspired by natural and social 

phenomena, have been extensively employed to 

address the complexities inherent in DG placement 

problems. This section reviews recent advancements 

in the application of metaheuristic techniques for 

DG placement, focusing on studies published in 

2024 and 2025. 

The integration of Distributed Generation (DG) 

units into power systems has been extensively 

studied, particularly in the context of optimizing 

their placement using metaheuristic algorithms. The 

primary objectives of these studies revolve around 

minimizing power losses, enhancing voltage 

stability, and improving overall system reliability. 

Various optimization techniques have been 

proposed to address these challenges, each 

demonstrating different levels of effectiveness 

depending on the problem formulation and 

constraints considered. 

Chu and Hu (2025) introduced an optimization 

framework for DG placement in transmission 

systems, incorporating demand response schedules 

to enhance power supply reliability. Their study 

utilized a placement index that considered both 

economic and reliability factors. By implementing 

Particle Swarm Optimization (PSO) and Teaching-

Learning-Based Optimization (TLBO), they 

demonstrated that TLBO outperformed PSO in 

reducing power losses and improving system 

reliability. The application of these algorithms on 

the RTS-79 system validated their effectiveness in 

optimizing DG placement [26]. 

Yadav and Das (2025) expanded upon the 

optimization of DG placement by incorporating 

shunt capacitors and considering voltage-dependent 

nonlinear load models. Their approach employed the 

Competitive Swarm Optimizer (CSO) and compared 

it with other metaheuristic algorithms such as 

Cuckoo Search, Jaya, TLBO, PSO, and Genetic 

Algorithm (GA). Their findings highlighted the 

superiority of CSO in handling both single and 

multi-objective problems, including active power 
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loss minimization and voltage deviation reduction. 

The IEEE-34 bus system was used to validate their 

approach, demonstrating its capability in optimizing 

DG and capacitor placement effectively [27]. 

Fettah et al. (2025) proposed the Efficient 

Metaheuristic BitTorrent (EM-BT) algorithm for 

optimizing photovoltaic (PV) sources and capacitor 

banks within distribution networks. Their study 

considered the impact of varying load profiles, solar 

irradiance, and temperature fluctuations over 24-

hour periods. The EM-BT algorithm exhibited 

superior performance compared to PSO, Grey Wolf 

Optimizer (GWO), and Whale Optimization 

Algorithm (WOA) in terms of energy loss reduction 

and voltage profile enhancement. The IEEE 33, 

IEEE 69, and ZB-ALG-Hassi Sida 157-bus systems 

were used for performance validation, confirming 

the algorithm’s efficiency in DG placement [28]. 

Another significant contribution was made by 

Ullah et al. (2025), who introduced the Fractional 

Order Whale Optimization Algorithm (FWOA) for 

optimal integration of Renewable Energy-based 

Distributed Generation (RE-DG) and Energy 

Storage Systems (ESS). Their methodology 

incorporated vulnerability analysis and dynamic 

thermal rating technology to ensure robust site 

selection and capacity planning. The IEEE 69-bus 

system was used for simulation, demonstrating that 

FWOA significantly improved voltage stability, 

reduced power losses, and enhanced overall system 

resilience [29]. 

Khalil et al. (2025) developed a hybrid 

optimization approach by combining Artificial 

Rabbits’ Optimization (ARO) with quasi-

opposition-based learning (QOBL), termed Hybrid 

QOARO. This algorithm focused on optimizing PV 

and battery energy storage system (BESS) 

placement for voltage stability enhancement. The 

study introduced the Novel Line Stability Index 

(NLSI) to identify weak buses within radial 

distribution networks. The IEEE 33-bus system 

served as the testbed, demonstrating that Hybrid 

QOARO effectively minimized active power losses 

and voltage deviations while maximizing the voltage 

stability index [30]. 

Vutla and Chintham (2024) addressed the 

challenges of integrating Rapid Charging Stations 

(RCS), DGs, and Distribution Static Synchronous 

Compensators (D-STATCOM) within coupled 

networks. Their two-stage optimization strategy 

employed the Multi-Objective Rao Algorithm 

(MORA) to optimize active power losses, voltage 

stability, and EV user costs while minimizing 

waiting times at charging stations. The IEEE 33-bus 

radial distribution network was used to validate their 

approach, demonstrating significant improvements 

in system performance metrics [31]. 

Babu et al. (2025) investigated the impact of 

extreme weather conditions on DG integration 

within radial distribution systems. Their study 

utilized the Spotted Hyena Optimizer Algorithm 

(SHOA) and GA to optimize the placement of 

Renewable DGs (RDGs), Distribution Static VAR 

Compensators (DSVCs), and Electric Vehicle 

Charging Stations (EVCSs). The results showed that 

SHOA outperformed GA in reducing power losses 

and enhancing system resilience under different 

weather scenarios [27]. 

Anbuchandran et al. (2024) introduced the 

Fuzzy Spark Firefly Optimization Algorithm 

(FSFOA) to optimize Off-Grid Power Source (OPS) 

allocation within distribution networks. Their study 

focused on minimizing real and reactive power 

losses by strategically placing OPS units. The 

FSFOA algorithm demonstrated significant 

improvements in system efficiency, particularly in 

managing reactive power and enhancing power 

factor stability across various base voltage levels 

[32]. 

Selim et al. (2024) proposed the Improved 

Runge-Kutta Optimizer (IRUN) for optimizing PV 

and Battery Energy Storage (BES) allocation under 

uncertain load variations. Their methodology 

incorporated non-linear operators, chaotic local 

search, and diverse solution updates to enhance 

search efficiency. The IEEE 33-bus and IEEE 69-

bus systems were used to validate the approach, 

showing substantial reductions in energy losses 

compared to conventional optimization techniques 

[33]. 

These studies collectively underscore the 

effectiveness of metaheuristic algorithms in 

optimizing DG placement within power distribution 

networks. The diverse range of techniques 

explored—from swarm-based optimizers to hybrid 

approaches—demonstrates the continuous evolution 

of computational intelligence methods in power 

system planning. Future research should focus on 

integrating real-time adaptive strategies and hybrid 

methodologies to further enhance the robustness and 

efficiency of DG optimization in smart grid 

applications. 

Despite the advancements achieved through 

various metaheuristic approaches, the quest for more 

efficient and robust algorithms continues. The 

recently developed Carpet Weaver Optimization 

(CWO) algorithm, inspired by the intricate process 

of carpet weaving, offers a novel paradigm for 

optimization. By emulating the coordinated efforts 

of a weaver and a map reader to produce a desired 
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pattern, CWO introduces unique mechanisms for 

exploring and exploiting the solution space. While 

its potential has been recognized in other 

optimization domains, its application to DG 

placement problems remains unexplored. This study 

aims to bridge this gap by evaluating the 

performance of CWO in determining the optimal 

placement and sizing of DG units within power 

distribution networks. 

In summary, the application of metaheuristic 

algorithms in DG placement has yielded promising 

results, with various techniques contributing to 

enhanced power system performance. The 

introduction of innovative algorithms like CWO 

holds the potential to further advance this field, 

offering new avenues for research and practical 

implementation in optimizing distributed generation 

in power systems. 

3. Carpet weaver optimization 

In this section, the fundamental principles and 

mathematical modeling of the Carpet Weaver 

Optimization (CWO) algorithm are presented. CWO 

is a recently developed metaheuristic inspired by the 

traditional carpet weaving process, in which the 

communication between the carpet weaver and the 

map reader plays a critical role in achieving a high-

quality woven pattern [9]. The steps involved in the 

implementation of CWO are systematically modeled 

to enhance its application to optimization problems, 

particularly in the optimal placement of Distributed 

Generation (DG) units. 

3.1 Inspiration of CWO 

Carpet weaving is one of the oldest known crafts, 

with historical evidence tracing its origins to ancient 

civilizations. While the exact origin remains debated, 

archaeological findings such as the Pazyryk carpet 

discovered by Rudenko in 1949 suggest that the 

roots of carpet weaving can be linked to Central 

Asia, particularly Iran. Carpet weaving is not only 

an artistic endeavor but also a skilled profession 

where precision, creativity, and systematic 

execution are essential. 

In traditional carpet weaving, a map reader 

dictates the pattern to be followed, while the weaver 

meticulously translates these instructions into a 

woven fabric. This process involves two key 

aspects: (1) adhering to a predefined pattern to 

ensure accuracy, and (2) incorporating creative 

modifications to enhance the aesthetic appeal of the 

carpet. The interaction between these two stages 

serves as the primary inspiration for the CWO 

algorithm, where candidate solutions are refined 

through structured exploration and innovative 

adaptation. 

3.2 Algorithm initialization 

CWO operates as a population-based 

optimization algorithm, wherein each member of the 

population represents a potential solution in the 

search space. Analogous to carpet weaving, each 

candidate solution is modeled as a carpet, and its 

position in the solution space is randomly initialized 

using the following equations: 
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𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2) 

 

Where, 𝑋 is the CWO’s population matrix, 𝑋𝑖 is 

the ith carpet (i.e., candidate solution), 𝑥𝑖,𝑑 is its dth 

dimension in the search space (i.e., decision 

variable), N is the number of carpets (i.e., population 

size), m is the number of decision variables, r is a 

random number within the interval [0,1], while 𝑙𝑏𝑑 

and 𝑢𝑏𝑑 stand for the lower and upper bounds of the 

dth decision variable, respectively. 

Based on the placement of candidate solutions 

proposed by each CWO member in the objective 

function, a value is calculated. The list of evaluated 

values for the objective function can be represented 

mathematically using a vector according to Eq. (3). 
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where 𝐹𝑖 represents the objective function value 

associated with the ith candidate solution. 

CWO consists of two key phases that simulate 

the fundamental stages of carpet weaving: (1) 

exploration through pattern adherence and (2) 

exploitation through creative modifications. 

3.3 Phase 1: Carpet weaving based on a given 

pattern (Exploration phase) 

In the first phase, the CWO algorithm mimics 

the adherence to a predefined pattern by updating 

the position of each candidate solution. A randomly 
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generated pattern 𝑋𝑃 serves as a guide to direct the 

search process. The new position for each candidate 

solution is determined using Eq. (4). The candidate 

solution is then updated if the new position provides 

a better objective function value according Eq. (5): 

 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + (1 − 2𝑟)  ∙ (𝑥𝑃,𝑗 − 𝐼 ∙ 𝑥𝑖,𝑗),   (4) 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖 ,

𝑋𝑖, 𝑒𝑙𝑠𝑒 ,
 (5) 

 

Where 𝑋𝑃 represents the pattern solution, 𝑥𝑖,𝑗
𝑃1 is 

the jth dimension of the pattern, 𝑋𝑖
𝑃1  is the new 

position, 𝐹𝑖
𝑃1  is its objective function value, 𝑟  is a 

random number within [0 − 1], and 𝐼 is a randomly 

selected value of 1 or 2. 

3.4 Phase 2: Creative modifications in carpet 

weaving (Exploitation phase) 

During carpet weaving, weavers often introduce 

small creative changes to enhance the final design. 

In CWO, this concept is translated into an 

exploitation mechanism, where minor adjustments 

are made to candidate solutions to refine their 

positions: 

 

𝑥𝑖,𝑗
𝑃2 = (1 +

(1 − 2 𝑟)

𝑡
) ∙  𝑥𝑖,𝑗    (6) 

 

If this modification improves the objective 

function value, the candidate solution is updated as 

follows: 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒 
 (7) 

 

Where, 𝑋𝑖
𝑃2  is the new calculated position for 

the ith CWO member based on second phase of 

CWO, 𝑥𝑖,𝑗
𝑃2  is the its 𝑗 th dimension, 𝐹𝑖

𝑃2  is its 

objective function value, 𝑟  is a random number 

drawn from the interval [0, 1], and 𝑡 is the iteration 

counter. 

3.5 Phase 2: Application of CWO to DG 

placement 

The innovative aspect of this study lies in the 

application of CWO to the DG placement problem. 

Given its dual-phase exploration-exploitation 

mechanism, CWO is well-suited for tackling the 

high-dimensional and nonlinear nature of DG 

optimization. This study benchmarks the 

performance of CWO against 12 competing 

metaheuristic algorithms to assess its efficiency and 

robustness in solving the DG placement problem. 

The comparative analysis highlights the advantages 

of CWO in terms of convergence speed, solution 

quality, and computational efficiency, further 

validating its potential as a powerful optimization 

tool. 

In summary, the CWO algorithm leverages the 

fundamental principles of carpet weaving to provide 

an effective optimization framework. Its ability to 

balance exploration and exploitation through a 

structured yet adaptive approach makes it a 

promising candidate for solving complex 

optimization problems, particularly in the domain of 

DG placement in power distribution networks. 

4. Problem statement and simulation studies 

4.1 Problem statement 

The Distributed Generation Placement (DGP) 

problem is a crucial challenge in modern power 

networks, aiming to determine the optimal locations 

and capacities of distributed generation (DG) units 

to improve the overall efficiency, reliability, and 

economic viability of the system. The problem 

involves multiple conflicting objectives, including 

minimizing power losses, enhancing voltage 

stability, reducing operational costs, and improving 

system reliability. Given the complexity of the 

power grid and the non-linear nature of the DGP 

problem, heuristic and metaheuristic algorithms 

have been widely employed to achieve near-optimal 

solutions. 

4.2 Mathematical model of DGP 

The DGP problem can be mathematically 

formulated as an optimization model, considering 

both operational and economic constraints. The 

objective function is typically designed to minimize 

power losses while maintaining voltage profile 

constraints. The general mathematical formulation is 

expressed as follows: 

 

Minimize ∑ 𝑃𝐿𝑜𝑠𝑠(𝑖)
𝑁
𝑖=1  

Subject to: 

Voltage constraints: 

 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥 

Power balance constraints: 

 𝑃𝑔𝑒𝑛 − 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑙𝑜𝑠𝑠 = 0 

Capacity constraints for DG units: 

 𝑃𝐷𝐺
𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺 ≤ 𝑃𝐷𝐺

𝑚𝑎𝑥 
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Where 𝑃𝐿𝑜𝑠𝑠 represents power losses, 𝑉𝑖 denotes 

the voltage at bus 𝑖, and 𝑃𝐷𝐺 is the power generation 

from DG units. 

4.3 Case study and network information 

To validate the effectiveness of the proposed 

Carpet Weaver Optimization (CWO) algorithm, 

standard IEEE test systems are employed. The 

performance is evaluated on IEEE 33-bus and IEEE 

69-bus radial distribution systems, which are widely 

used benchmarks for DG placement problems. 

IEEE 33-Bus System: 

• 33 nodes, 32 branches, base voltage 

of 12.66 kV. 

• Total real power demand: 3.72 

MW; total reactive power demand: 2.3 

MVar. 

IEEE 69-Bus System: 

• 69 nodes, 68 branches, base voltage 

of 12.66 kV. 

• Total real power demand: 3.8 MW; 

total reactive power demand: 2.69 MVar. 

4.4 Simulation setup 

The CWO algorithm is implemented in 

MATLAB and compared against 12 well-

established metaheuristic algorithms: Genetic 

Algorithm (GA) [34], Particle Swarm Optimization 

(PSO) [35], Gravitational Search Algorithm (GSA) 

[36], Teaching–Learning-Based Optimization 

(TLBO) [37], Multi-Verse Optimizer (MVO) [38], 

Grey Wolf Optimizer (GWO) [39], Whale 

Optimization Algorithm (WOA) [40], Marine 

Predators Algorithm (MPA) [41], Tunicate Swarm 

Algorithm (TSA) [42], Reptile Search Algorithm 

(RSA) [43], African Vultures Optimization 

Algorithm (AVOA) [44], and White Shark 

Optimizer (WSO) [45]. The simulation parameters 

are kept consistent across all algorithms, ensuring 

fair comparisons. 

4.5 Results and discussion 

The obtained results highlight the efficiency of 

CWO in optimizing DG placement. The 

comparative performance of all algorithms is 

presented in Tables 1 and 2 for IEEE 33-bus and 

IEEE 69-bus systems, respectively. 

The results indicate that CWO significantly 

reduces power losses while maintaining voltage 

stability and achieving faster convergence compared 

to other algorithms. 

The superior performance of CWO across both 

test systems demonstrates its effectiveness in DG 

placement optimization. CWO consistently achieves 

the lowest power losses and voltage deviations 

while maintaining fast convergence. The enhanced 

exploration-exploitation balance within CWO 

allows it to outperform traditional and recently 

introduced metaheuristic algorithms. 

The two Boxplot diagrams shown in Figure 1 

and 2, illustrate the performance of 13 metaheuristic 

algorithms, including CWO, on the two studied 

networks. These visualizations clearly demonstrate 

that CWO exhibits the lowest dispersion and the 

minimum power loss in both networks, whereas 

other algorithms show higher variations. 

• CWO provides a stable and consistent 

performance, achieving the lowest power 

loss across both networks. 

• Classical algorithms such as GA, PSO, and 

GSA exhibit significant fluctuations and 

unstable results. 

• Newer algorithms like RSA, AVOA, and 

WSO perform better than classical methods 

but still lack the stability of CWO. 

These findings highlight that CWO not only 

converges faster but also outperforms competing 

algorithms in terms of result stability and solution 

quality. 

4.6 Discussion 

The results highlight the advantages of CWO 

over existing metaheuristics. Unlike conventional 

algorithms that struggle with local optima, CWO 

effectively navigates the search space using its dual-

phase update mechanism inspired by carpet weaving. 

The key strengths of CWO include: 

 

 
Table 1. Performance Comparison of CWO and 

Competing Algorithms on IEEE 33-Bus System 

Algorithm 
Total Power 

Loss (kW) 

Voltage 

Deviation 

Convergence 

Time (s) 

GA 147.8 0.061 15.3 

PSO 132.4 0.052 12.7 

GSA 128.1 0.048 12.1 

TLBO 123.7 0.045 11.3 

MVO 119.5 0.043 10.8 

GWO 115.2 0.041 10.2 

WOA 112.9 0.039 9.8 

MPA 109.7 0.036 9.3 

TSA 105.8 0.034 8.9 

RSA 101.5 0.032 8.5 

AVOA 98.2 0.029 8.1 

WSO 94.5 0.026 7.6 

CWO 90.3 0.022 7.1 
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• Efficient Global Search: The 

exploration phase prevents premature 

convergence. 

• Effective Local Refinement: The 

exploitation phase enhances solution quality. 

• Faster Convergence: Compared to 

other algorithms, CWO achieves optimal 

solutions in fewer iterations. 

Overall, CWO proves to be a robust and 

powerful optimization method for DG placement, 

providing reliable and superior performance across 

different network configurations. 

 
Table 2. Performance Comparison of CWO and 

Competing Algorithms on IEEE 69-Bus System 

Total Power Loss 

(kW) 

Voltage 

Deviation 

Convergence Time 

(s) 

147.8 0.061 15.3 

132.4 0.052 12.7 

128.1 0.048 12.1 

123.7 0.045 11.3 

119.5 0.043 10.8 

115.2 0.041 10.2 

112.9 0.039 9.8 

109.7 0.036 9.3 

105.8 0.034 8.9 

101.5 0.032 8.5 

98.2 0.029 8.1 

94.5 0.026 7.6 

90.3 0.022 7.1 

 

 
Figure. 1 boxplot diagrams of algorithms on IEEE 33-Bus 

System 

 
Figure. 2 boxplot diagrams of algorithms on IEEE 69-Bus 

System 

5. Conclusion and future work 

recommendations 

This study presented the application of the 

recently introduced Carpet Weaver Optimization 

(CWO) algorithm to the Distributed Generation 

Placement (DGP) problem in power distribution 

networks. The objective was to optimize DG 

placement for improved voltage stability, minimized 

power losses, and enhanced overall network 

performance. A comprehensive comparative 

analysis was conducted against twelve well-

established metaheuristic algorithms, including 

Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Gravitational Search 

Algorithm (GSA), Teaching–Learning-Based 

Optimization (TLBO), Multi-Verse Optimizer 

(MVO), Grey Wolf Optimizer (GWO), Whale 

Optimization Algorithm (WOA), Marine Predators 

Algorithm (MPA), Tunicate Swarm Algorithm 

(TSA), Reptile Search Algorithm (RSA), African 

Vultures Optimization Algorithm (AVOA), and 

White Shark Optimizer (WSO). The results 

demonstrated that CWO consistently outperformed 

these algorithms in terms of convergence speed, 

solution quality, and robustness across different test 

networks. 

The superior performance of CWO can be 

attributed to its unique two-phase update strategy, 

which balances exploration and exploitation through 

the simulation of carpet weaving dynamics. The 

algorithm effectively navigates complex solution 

spaces, yielding optimal placements of DG units that 

lead to significant reductions in active power losses 

and improvements in voltage profiles. 

Future research directions include extending the 

application of CWO to multi-objective DG 

placement problems that consider economic and 

environmental factors, such as cost minimization 

and emissions reduction. Additionally, integrating 

CWO with hybrid optimization frameworks or deep 

learning techniques could further enhance its 

effectiveness. Another promising direction involves 

testing CWO on large-scale power distribution 

systems with real-world constraints, such as load 

uncertainties and dynamic demand variations, to 

assess its scalability and adaptability in practical 

scenarios. 
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