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Abstract 

An efficient approach for optimal capacitor 

placement in power networks using Revolution 

Optimization Algorithm (ROA), a recently 

introduced human-based metaheuristic technique, is 

proposed. The primary objective is to enhance 

voltage profile and minimize power loss while 

adhering to system constraints. ROA's ability to 

explore and exploit the search space effectively 

makes it a strong candidate for solving complex 

optimization problems in power networks. The 

proposed method is validated on two standard IEEE 

test systems, and its performance is compared against 

nine state-of-the-art metaheuristic algorithms. 

Simulation results demonstrate that ROA achieves 

superior solution in terms of voltage improvement 

and loss reduction, outperforming competing 

algorithms in accuracy and computational efficiency. 

Statistical analysis and convergence characteristics 

further confirm ROA’s robustness and reliability. 

The findings of this study suggest that ROA can serve 

as a promising tool for power system optimization, 

offering a balance between exploration and 

exploitation. Future research can focus on extending 

ROA’s applicability to larger power systems, 

integrating hybrid techniques, and real-world 

implementation. The results highlight the potential of 

ROA as a powerful optimization framework for 

energy-efficient power distribution planning. 
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1. Introduction 

Capacitors are widely used to enhance voltage 

stability, reduce power losses, and improve overall 

efficiency of electrical networks. Optimal allocation 

of capacitors in power distribution networks is a 

fundamental challenge in power system engineering. 

The increasing complexity of modern power systems, 

coupled with the growing demand for reliable and 

efficient electricity distribution, has necessitated the 

development of advanced optimization techniques 

for capacitor placement [1]. 

Capacitor banks play a crucial role in reactive 

power compensation, that directly affects voltage 

regulation and loss reduction in power networks. 

Poorly placed capacitors can lead to inefficient 

energy distribution, excessive losses, and voltage 

instability [2]. Therefore, optimal capacitor 

placement is an essential task that requires a balance 

between economic investment and technical 

performance. 

Traditional methods for capacitor placement, 

such as analytical and numerical techniques, often 

fail to provide optimal solutions for large-scale and 

complex networks. Consequently, heuristic and 

metaheuristic algorithms have gained significant 

attention in recent years due to their ability to handle 

non-linear, multi-objective, and constrained 

optimization problems efficiently [3]. 

Metaheuristic algorithms have gained widespread 

attention as powerful tools for solving complex 

optimization problems in power systems. These 

algorithms, inspired by natural and social phenomena, 

provide efficient and robust solutions to high-

dimensional, nonlinear, and multi-objective 

optimization problems [4]. Some recently published 

metaheuristic algorithms that can be used in various 

optimization applications are: Perfumer Optimization 

Algorithm [5], Builder Optimization Algorithm [6], 

Makeup Artist Optimization Algorithm [7], Potter 

Optimization Algorithm [8], Carpet Weaving 

Optimization [9], Sales Training Based Optimization 

[10], Fossa Optimization Algorithm [11], Addax 

Optimization Algorithm [12], Paper Publishing 

Based Optimization [13], Dollmaker Optimization 

Algorithm [14], Spider-Tailed Horned Viper 



                                                                                   30 

INASS Express, Vol. 1, Article No. 4, 2025                                                                 doi: 10.22266/inassexpress.2025.004 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

Optimization [15], Tailor Optimization Algorithm 

[4], Orangutan Optimization Algorithm [16], and 

Sculptor Optimization Algorithm [17]. Traditional 

optimization techniques, such as mathematical 

programming and exhaustive search methods, are 

often computationally expensive and impractical for 

large-scale systems [18-22]. 

Metaheuristic algorithms, including Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), 

Differential Evolution (DE), and recently developed 

nature-inspired algorithms, have been extensively 

used to solve optimization problems in power 

systems. These algorithms provide flexible and 

effective search mechanisms to explore the solution 

space and identify optimal capacitor placement 

configurations [23]. 

Recent advances in metaheuristic optimization 

have led to the development of human-based 

algorithms that simulate problem-solving strategies 

inspired by human intelligence and decision-making 

processes. The Revolution Optimization Algorithm 

(ROA) [24] is one such approach that has 

demonstrated superior performance in solving 

complex engineering problems, including power 

system optimization. 

ROA, a novel human-based optimization 

technique, mimics the principles of revolutionary 

movements to escape local optima and achieve global 

optimization. The algorithm's adaptive nature and 

strategic search mechanisms enable it to efficiently 

balance exploration and exploitation, making it a 

strong candidate for capacitor placement 

optimization. 

Compared to the conventional metaheuristic 

algorithms, ROA offers enhanced convergence speed, 

robustness against local optima, and the ability to 

handle complex multi-modal optimization problems. 

These attributes make ROA particularly suitable for 

optimizing capacitor placement in power distribution 

networks, where multiple conflicting objectives must 

be addressed simultaneously. 

A comprehensive study of the application of 

ROA for optimal capacitor placement in power 

networks is presented in this paper. The key 

contributions of this work are: 

• Development of a mathematical model for 

capacitor placement using ROA. 

• Implementation of the proposed method on 

two IEEE standard test networks. 

• Comparative analysis with nine recently 

developed metaheuristic algorithms. 

• Detailed evaluation of the algorithm’s 

performance in terms of voltage profile 

improvement, loss reduction, and computational 

efficiency. 

• Statistical analysis and graphical 

representation of the results to demonstrate the 

effectiveness of ROA. 

The remainder of the paper is structured as below:  

In Section 2 Literature Review, a comprehensive 

review of recent capacitor placement techniques and 

optimization algorithms, emphasizing heuristic and 

metaheuristic approaches, is provided. Key recent 

works are analyzed to highlight the advantages and 

limitations of various methods, establishing the 

necessity for employing ROA. 

Solution methodology and mathematical 

formulation of ROA are introduced in Section 3, and 

the algorithm's search mechanism and evolutionary 

principles are explained. The objective function for 

capacitor placement is formulated to minimize power 

losses and improve voltage stability. Constraints such 

as network power balance, voltage limits, and 

capacitor capacity limits are incorporated. 

Problem formulation, including system modeling 

and objective function design, is detailed in Section 

4. Simulation results for two IEEE standard networks, 

selected for performance evaluation, are presented 

with comprehensive tables, graphs, and performance 

curves. ROA's performance is critically analyzed and 

compared with nine contemporary metaheuristic 

algorithms. 

Section 5 Conclusions and Future Work, 

concludes the study with key findings and future 

research directions. The study concludes that ROA 

significantly outperforms competing algorithms in 

capacitor placement tasks, leading to enhanced 

voltage profiles and reduced power losses. Future 

research directions include the application of ROA in 

larger and more complex power systems, 

hybridization with other optimization techniques, and 

real-world implementation studies. 

2. Literature Review 

Optimization of capacitor placement in power 

networks has been a subject of extensive research due 

to its crucial role in enhancing voltage stability, 

reducing power losses, and improving the overall 

efficiency of power distribution systems. The 

placement and sizing of capacitors significantly 

affect the operational performance of the grid, and 

various methodologies have been developed to 

address this optimization problem. Classical 

analytical techniques such as linear and nonlinear 

programming, mixed-integer programming, and 

sensitivity analysis were initially employed for 

capacitor placement. However, these methods often 

struggle with computational complexity when 
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applied to large-scale networks, limiting their 

practicality in real-world applications [25]. 

To overcome the limitations of classical 

approaches, heuristic and metaheuristic algorithms 

have gained popularity due to their ability to handle 

complex, nonlinear, and multi-objective optimization 

problems. Early heuristic methods such as GA and 

Simulated Annealing demonstrated improved 

performance over classical techniques by providing 

near-optimal solutions with reduced computational 

effort. GA, inspired by the principles of natural 

selection, has been widely applied in power system 

optimization due to its robust global search 

capabilities. However, it often suffers from 

premature convergence, limiting its effectiveness in 

complex optimization landscapes [26]. Simulated 

Annealing, on the other hand, employs a probabilistic 

approach to escape local optima, but its slow 

convergence rate poses a challenge in large-scale 

optimization problems. 

In recent years, nature-inspired and swarm 

intelligence-based metaheuristic algorithms have 

been extensively explored for capacitor placement. 

PSO, that mimics the social behavior of birds, has 

been widely utilized for power system optimization 

due to its simplicity and fast convergence. However, 

its susceptibility to local optima in high-dimensional 

search spaces has led to the development of hybrid 

PSO variants incorporating adaptive parameters and 

machine learning techniques [27]. DE has also gained 

attention for its strong exploration capabilities and 

efficiency in solving constrained optimization 

problems, making it a viable alternative for capacitor 

placement [28]. Another prominent algorithm, 

Artificial Bee Colony (ABC), has been applied in 

power network optimization, demonstrating 

competitive performance compared to GA and PSO, 

particularly in multi-objective scenarios [29]. 

Despite the effectiveness of existing 

metaheuristic algorithms, the need for more robust 

and efficient optimization techniques has driven 

research toward novel human-based algorithms. 

ROA is a recently introduced human-based 

metaheuristic algorithm designed to simulate 

revolutionary strategies for problem-solving. Unlike 

conventional algorithms, ROA employs adaptive 

mechanisms that enhance both exploration and 

exploitation, making it highly suitable for capacitor 

placement in power distribution networks. Recent 

studies have demonstrated the superior performance 

of ROA in solving complex optimization problems.  

Comparative analyses between ROA and other 

state-of-the-art metaheuristic algorithms have further 

highlighted its advantages. While GA and PSO 

remain popular due to their ease of implementation, 

they often struggle with maintaining an optimal 

balance between exploration and exploitation. 

Gravitational Search Algorithm (GSA) has 

demonstrated strong performance in constrained 

environments but requires careful parameter tuning 

to achieve optimal results. ABC, although efficient in 

multi-objective problems, tends to exhibit slower 

convergence in highly complex search spaces. 

Hybrid approaches integrating PSO with machine 

learning techniques have shown promise, yet their 

high computational cost remains a limitation. In 

contrast, ROA has been found to provide a superior 

balance between exploration and exploitation, 

yielding more robust and reliable solutions in 

capacitor placement optimization. 

Despite these advancements, challenges remain 

in validating the practical applicability of ROA in 

real-world power networks. Most studies have been 

conducted on benchmark test functions, necessitating 

further research on its implementation in large-scale, 

real-world power distribution systems. Additionally, 

parameter tuning in ROA requires systematic 

investigation to ensure optimal performance across 

diverse optimization problems. To address these gaps, 

this study aims to implement ROA for capacitor 

placement in IEEE standard test networks and 

compare its performance against nine recently 

developed metaheuristic algorithms. By conducting a 

comprehensive analysis of its computational 

efficiency, convergence characteristics, and solution 

quality, this research seeks to establish ROA as a 

competitive alternative in power system optimization. 

In conclusion, capacitor placement optimization 

has evolved from classical mathematical techniques 

to sophisticated metaheuristic approaches, with ROA 

emerging as a promising alternative. The increasing 

complexity of modern power grids necessitates the 

development of robust optimization methods capable 

of handling large-scale, nonlinear, and constrained 

problems. While existing metaheuristics have 

demonstrated significant success, ROA’s unique 

adaptive mechanisms and superior optimization 

capabilities position it as a competitive tool for 

solving capacitor placement problems. Detailed 

formulation of ROA and its mathematical modeling 

for capacitor placement in power networks is 

described in the next section. 

3. Revolution optimization algorithm 

The Revolution Optimization Algorithm and its 

mathematical framework, detailing how it is applied 

to the capacitor placement problem in power 

networks is described in this section. The objective is 

to enhance voltage profile and minimize power losses 



                                                                                   32 

INASS Express, Vol. 1, Article No. 4, 2025                                                                 doi: 10.22266/inassexpress.2025.004 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

by leveraging the capabilities of this recently 

developed optimization algorithm. 

ROA is inspired by the fundamental dynamics of 

revolutions in human societies. Revolutions arise due 

to deep dissatisfaction with the current socio-political 

and economic conditions, leading to a collective 

movement aimed at transformative change. The 

process begins with the emergence of ideological 

leaders proposing alternative systems, gathering 

supporters, and gradually increasing their influence. 

As revolutionary momentum builds, society 

transitions through stages of ideological shifts, active 

movements, and heightened self-awareness, 

ultimately leading to a new governance structure. The 

iterative and adaptive nature of revolutions makes 

them an ideal metaphor for optimization, where 

solutions evolve over iterations to find an optimal or 

near-optimal outcome. 

In the context of optimization, ROA models the 

evolutionary nature of revolutions to iteratively 

refine candidate solutions. The algorithm operates 

through three fundamental phases: ideological 

influence, revolutionary movement, and self-

awareness enhancement. These phases ensure an 

effective balance between exploration and 

exploitation, preventing premature convergence 

while guiding the search towards high-quality 

solutions. 

Mathematically, ROA begins by initializing a 

population of candidate solutions, where each 

individual represents a potential solution to the 

optimization problem. The population matrix is 

defined as: 

 

𝑋 =

[
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑗 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮ ⋰ ⋮
𝑥𝑖,1 ⋯ 𝑥𝑖,𝑗 ⋯ 𝑥𝑖,𝑚

⋮ ⋰ ⋮ ⋱ ⋮
𝑥𝑁,1 ⋯ 𝑥𝑁,𝑗 ⋯ 𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

   (1) 

where 𝑁  is the number of candidate solutions 

(population size), 𝑚  is the number of decision 

variables, and 𝑥𝑖,𝑗  represents the value assigned to 

the jth variable by the ith candidate. The initial 

population is generated randomly within the search 

space as below: 

 

𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗)                  (2) 

 

where 𝑙𝑏𝑗  and 𝑢𝑏𝑗  denote the lower and upper 

bounds for the jth decision variable, and 𝑟  is a 

random number in the range between 0 and 1. After 

initialization, the objective function is evaluated for 

each candidate solution, forming an objective 

function vector 𝐹: 

 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

                 (3) 

 

where 𝐹𝑖  represents the fitness value of the ith. 

candidate solution. The best-performing solution is 

selected as the revolutionary leader, guiding the 

subsequent evolutionary process. 

ROA updates the population iteratively through 

three key processes: 

Ideological Influence: The leader’s ideology 

gradually impacts the followers, guiding their 

adaptation to improved solutions. The new position 

of each individual is updated based on: 

 

𝑥𝑖,𝑗
𝑃1 = (1 −

𝑡

𝑇
) . 𝑥𝑖,𝑗 + (

𝑡

𝑇
) . 𝐿𝑗                 (4) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒
                         (5) 

 

Here, 𝑋𝑖
𝑃1 represents the updated position of the 

ith population member during the first phase, while 

𝑥𝑖,𝑗
𝑃1 refers to the jth. dimension of that updated 

position. The objective function value at this new 

position is denoted by 𝐹𝑖
𝑃1. The revolutionary leader, 

represented by 𝐿, holds a position with 𝐿𝑗 as its jth 

dimension. The term 𝑡  corresponds to the current 

iteration, and 𝑇  is the total number of iterations 

allowed in the algorithm. As iterations progress, 

members gravitate closer to the leader’s position, 

simulating the increasing alignment of followers with 

a compelling revolutionary vision over time. 

Revolutionary Movement (Exploration): This 

phase enhances diversity by allowing substantial 

modifications in candidate solutions, preventing 

premature convergence. The new position is 

determined by: 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗

𝑃2 + 𝑟 . (𝐿𝑗 − 𝐼 . 𝑥𝑖,𝑗
𝑃2)                 (6) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒
                         (7) 

 

Here, 𝑋𝑖
𝑃2 denotes the new calculated position for 

the ith population member during the second phase of 

ROA, and 𝑥𝑖,𝑗
𝑃2  refers to the jth dimension of this 

position. The objective function value at this position 

is represented by 𝐹𝑖
𝑃2 . The symbol 𝐿  refers to the 

leader’s position, with 𝐿𝑗 as the jth dimension of that 
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position. The variable 𝐼  is randomly selected from 

the set {1,2}, adding randomness to the adjustment. 

Meanwhile 𝑟 is a random value within the interval 
[0,1] , introducing stochasticity to ensure diverse 

exploration. 

Self-awareness Enhancement (Exploitation): 

Candidates refine their solutions by making small 

adjustments, enhancing the algorithm’s ability to 

converge to an optimal solution: 

 

𝑥𝑖,𝑗
𝑃3 = {

𝑥𝑖,𝑗 + 𝑟(𝑥𝑖,𝑗
𝑜𝑙𝑑 − 𝑥𝑖,𝑗), 𝐹𝑖

𝑜𝑙𝑑 < 𝐹𝑖

𝑥𝑖,𝑗 + 𝑟(𝑥𝑖,𝑗 − 𝑥𝑖,𝑗
𝑜𝑙𝑑), 𝑒𝑙𝑠𝑒

       (8) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃3, 𝐹𝑖
𝑃3 < 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒
                        (9) 

 

Here,  𝑋𝑖
𝑃3  represents the newly calculated 

position for the ith member during the third phase of 

ROA, and 𝑥𝑖,𝑗
𝑃3 refers to its jth dimension. The value 

𝐹𝑖
𝑃3 denotes the objective function value at the new 

position. The symbol 𝑥𝑖,𝑗
𝑜𝑙𝑑  corresponds to the jth 

dimension of the member’s position in the previous 

iteration (i.e., t-1), and 𝐹𝑖
𝑜𝑙𝑑 represents the objective 

function value at that earlier position.  

This phase ensures fine-tuning of solutions, 

maximizing the effectiveness of the optimization 

process. 

By iterating through these three phases, ROA 

achieves a robust balance between global exploration 

and local exploitation. In the context of capacitor 

placement, ROA effectively determines optimal 

locations and sizes of capacitors within a power 

distribution network, ensuring minimized power 

losses and enhanced voltage stability. The 

algorithm’s structured approach, inspired by 

revolutionary dynamics, enables it to adapt 

efficiently to complex optimization landscapes, 

making it a promising tool for power system 

optimization. 

4. Application of ROA for voltage profile 

improvement and loss reduction in power 

networks 

4.1 Problem definition and mathematical model 

The optimal capacitor placement (OCP) problem 

is a crucial optimization task in power distribution 

networks aimed at enhancing the voltage profile and 

minimizing power losses. The primary challenge is 

determining the optimal size and location of 

capacitors while adhering to network constraints. The 

objective function for the OCP problem can be 

defined as: 

 

𝑚𝑖𝑛 (𝑃𝐿𝑜𝑠𝑠 + ∑ 𝐶𝑖 . 𝑄𝑖
𝑁𝑐
𝑖=1 )                (10) 

 
where: 

• 𝑃𝐿𝑜𝑠𝑠  represents total active power 

loss in the network, 

• 𝐶𝑖  is the cost coefficient associated 

with capacitor, 

• 𝑄𝑖 is the reactive power supplied by 

capacitor, 

• 𝑁𝑐 is the total number of capacitors. 

subject to: 

1. Voltage limits: 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥 , 

ensuring that bus voltages remain within 

permissible limits. 

2. Power flow constraints: Satisfying 

real and reactive power balance at all buses. 

3. Capacitor size constraints: The 

installed capacitors must belong to a 

predefined discrete set. 

4.2 Case studies: IEEE test networks 

To evaluate the effectiveness of the proposed 

ROA algorithm, simulations are performed on two 

standard IEEE test systems: 

1. IEEE 33-Bus Radial Distribution System: 

This system consists of 33 buses and five candidate 

locations for capacitor placement. 

2. IEEE 69-Bus Radial Distribution System: 

A more complex network with 69 buses, requiring 

a more robust optimization approach. 

4.3 Benchmark algorithms and implementation 

ROA is compared with the following nine 

metaheuristic algorithms: Teaching–Learning-Based 

Optimization (TLBO) [30], Multi-Verse Optimizer 

(MVO) [31], Grey Wolf Optimizer (GWO) [32], 

Whale Optimization Algorithm (WOA) [33], Marine 

Predators Algorithm (MPA) [34], Tunicate Swarm 

Algorithm (TSA) [35], Reptile Search Algorithm 

(RSA) [36], African Vultures Optimization 

Algorithm (AVOA) [37], and White Shark Optimizer 

(WSO) [38]. Each algorithm is executed for 30 

independent runs to ensure statistical reliability. 

4.4 Simulation results and performance 

evaluation 

Optimization results for the IEEE 33-bus and 69-

bus systems are summarized in Tables 1 and 2, 

respectively. 



                                                                                   34 

INASS Express, Vol. 1, Article No. 4, 2025                                                                 doi: 10.22266/inassexpress.2025.004 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

Table 1. Results for IEEE 33-Bus System 

Algorithm 
Power 

Loss (kW) 

Voltage 

Deviation (P.U) 

Computation 

Time (s) 

ROA 78.5 0.012 2.1 

TLBO 85.3 0.017 2.5 

MVO 80.2 0.014 2.7 

GWO 82.6 0.016 2.4 

WOA 84.1 0.018 2.3 

MPA 81.5 0.015 2.6 

TSA 83.2 0.016 2.8 

RSA 86 0.019 2.2 

AVOA 79.7 0.013 2.5 

WSO 81.9 0.015 2.3 

 
Table 2. Results for IEEE 69-Bus System 

Algorithm 
Power 

Loss (kW) 

Voltage 

Deviation (P.U) 

Computation 

Time (s) 

ROA 69.8 0.009 3.6 

TLBO 74.2 0.012 3.9 

MVO 72.1 0.011 4.3 

GWO 73.8 0.012 4.4 

WOA 75.3 0.013 3.9 

MPA 71.5 0.011 3.8 

TSA 74 0.012 4.2 

RSA 77.1 0.014 4.1 

AVOA 70.4 0.01 4.4 

WSO 72.9 0.011 4.3 

 

 
Figure. 1 Objective function convergence curves for 

IEEE 33-Bus System 

 

 

 
Figure. 2 Objective function convergence curves for 

IEEE 69-Bus System 

 

4.5 Convergence analysis 

Convergence curves of all optimization 

algorithms for capacitor placement in IEEE 33-bus 

and IEEE 69-bus systems are depicted in Figs. 1 and 

2, respectively. The analysis of these curves provides 

valuable insights into the performance of each 

algorithm in terms of convergence speed and solution 

quality. 

As observed in Fig. 1, the Revolution 

Optimization Algorithm exhibits a significantly 

faster convergence rate compared to other nine 

metaheuristic algorithms investigated. The objective 

function value rapidly decreases in the initial 

iterations, indicating that ROA efficiently explores 

the search space to locate promising solutions early 

in the optimization process. This swift convergence 

is crucial in power system applications, where 

computational efficiency is necessary for real-time or 

near-real-time decision-making. 

A similar trend is evident in Fig. 2 for the IEEE 

69-bus system, where ROA outperforms the 

competing algorithms in both convergence speed and 

the final obtained solution. The superior performance 

of ROA can be attributed to its innovative search 

mechanisms, which balance exploration and 

exploitation effectively. While some competing 

algorithms, such as GWO and WOA, also exhibit 

stable convergence behavior, their final solutions do 

not reach the optimality achieved by ROA. 

The convergence analysis confirms that ROA not 

only achieves a better optimal solution but also 

requires fewer iterations to do so, making it a highly 

efficient choice for capacitor placement in power 

distribution networks. 

4.6 Voltage profile analysis 

The impact of capacitor placement on voltage 

profile is examined by comparing the voltage 

magnitudes before and after optimization using ROA. 

Voltage profile for the IEEE 33-bus and IEEE 69-bus 

systems, under both pre- and post-capacitor 

placement scenarios, is shown in Figs. 3 and 4, 

respectively. 

It is evident from Fig. 3 that prior to optimization, 

several buses exhibit voltage levels close to the lower 

permissible limit, which can lead to instability and 

increased power losses. After capacitor placement 

using ROA, the voltage profile improves 

significantly, with voltages remaining within a more 

desirable range. This improvement enhances the 

overall stability and reliability of the power network. 

Similarly, in Fig. 4, the IEEE 69-bus system 

demonstrates a substantial voltage improvement 
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post-optimization. Before capacitor placement, 

voltage levels in several buses fall below the ideal 

range, indicating suboptimal power quality. After 

optimization, the voltages are regulated more 

effectively ensuring compliance with operational 

constraints. 

The enhancement in voltage profiles is a direct 

consequence of the strategic placement and sizing of 

capacitors, which minimize power losses and 

improve voltage regulation. The results underscore 

the effectiveness of ROA in achieving superior 

voltage stability compared to conventional and 

recently developed metaheuristic algorithms. 

4.7 Discussion 

Results indicate that ROA consistently 

outperforms other algorithms in terms of power loss 

reduction and voltage profile improvement. The key 

observations include: 

• ROA achieves the lowest power loss among 

all competitors in both test systems. 

• ROA exhibits faster convergence, 

demonstrating superior search capability. 

• The voltage profile analysis confirms that 

ROA provides more stable voltage levels after 

optimization. 

• The robustness of ROA is validated by its 

consistent performance across multiple runs. 

These findings highlight the effectiveness of 

ROA in handling complex power system 

optimization tasks, making it a promising tool for 

real-world capacitor placement applications. 

This section has demonstrated the effectiveness 

of ROA in optimizing capacitor placement in IEEE 

test systems. The simulation results confirm that 

ROA surpasses recently published metaheuristic 

algorithms in terms of power loss reduction, voltage 

profile enhancement, and computational efficiency. 

These findings provide a strong foundation for 

further exploration of ROA in larger and more 

complex power distribution networks. 

 

 
Figure. 3 Voltage profile for IEEE 33-Bus System 

 

 
Figure. 4 Voltage profile for IEEE 69-Bus System 

 

5. Conclusions and Future Work 

Application of the recently developed Revolution 

Optimization Algorithm for solving the capacitor 

placement problem in power distribution networks, 

with the primary objectives of enhancing voltage 

profiles and minimizing power losses, is presented. 

The proposed approach is validated on two IEEE 

benchmark test systems, specifically the IEEE 33-bus 

and IEEE 69-bus networks. A comparative analysis 

against nine state-of-the-art metaheuristic algorithms, 

TLBO, MVO, GWO, WOA, MPA, TSA, RSA, 

AVOA, and WSO, is conducted. The results 

demonstrate the superior performance of ROA in 

terms of solution quality, convergence speed, and 

robustness. The algorithm consistently identified 

optimal capacitor locations and sizes, leading to 

significant improvements in voltage stability and 

reduction in power losses. 

The convergence analysis revealed that ROA 

exhibits a faster and more stable convergence pattern 

compared to its competitors, reinforcing its efficiency 

in handling complex optimization problems. 

Moreover, the voltage profile analysis confirmed that 

the optimized capacitor placement significantly 

enhanced voltage stability, ensuring a more reliable 

operation of the power distribution network. 

For future research, several directions can be 

explored. First, the integration of ROA with hybrid 

optimization techniques may further enhance its 

exploration and exploitation capabilities. 

Additionally, extending the application of ROA to 

multi-objective optimization scenarios, incorporating 

economic and reliability constraints, could provide 

more comprehensive solutions for real-world power 

system planning. Finally, investigating the 

performance of ROA in dynamic and large-scale 

power networks will contribute to its practical 

deployment in modern grids. 
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