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Abstract 

Sustainable Lot Size Optimization (SLSO) is a 

crucial challenge in Supply Chain Management 

(SCM) that aims to strike a balance between 

minimizing costs and achieving environmental and 

social objectives. It focuses on ensuring efficient 

production and inventory management while 

reducing the environmental footprint and enhancing 

social responsibility. Metaheuristic algorithms have 

proven to be highly effective in solving SLSO 

problems, as they can explore complex solution 

spaces to find near-optimal solutions, outperforming 

traditional methods in terms of flexibility and 

scalability. In this paper, we investigate the 

application of the recently published Builder 

Optimization Algorithm (BOA) to address SLSO 

challenges. The BOA is evaluated across 10 

different SLSO scenarios, and its performance is 

compared with that of twelve well-established 

metaheuristic algorithms. The results indicate that 

BOA performs exceptionally well, consistently 

providing high-quality solutions for SLSO problems. 

Moreover, simulation results demonstrate that BOA 

significantly outperforms its competitors, offering 

superior optimization results across all test cases. 

These findings highlight the potential of BOA as a 

robust and reliable optimization tool for tackling 

complex supply chain optimization problems, 

particularly those with sustainability objectives. 

 

Keywords: Supply chain management, Sustainable 

lot size optimization, Metaheuristic, Builder 

optimization algorithm, Performance comparison, 

Optimization. 

1. Introduction 

Supply Chain Management (SCM) is an 

essential aspect of modern business operations, 

dealing with the efficient movement and storage of 

goods and services across various stages of 

production, from the initial raw materials to the final 

consumer. At its core, SCM seeks to enhance the 

flow of materials, information, and finances, with 

the aim of optimizing processes to meet customer 

demands, minimize costs, and improve overall 

service levels. Effective SCM incorporates a range 

of key activities, including procurement, production, 

inventory management, transportation, and 

distribution, all while maintaining a strategic focus 

on customer satisfaction. As globalization and 

technological advancements continue to shape the 

dynamics of modern business environments, SCM is 

becoming increasingly complex, requiring advanced 

solutions to handle challenges such as supply chain 

disruptions, demand fluctuations, and sustainability 

issues [1]. In recent years, there has been a growing 

emphasis on integrating sustainability into SCM 

practices. This has led to the emergence of various 

optimization techniques that not only focus on cost 

reduction and efficiency but also account for 

environmental and social factors. One of the most 

important problems in SCM is the optimization of 

production and inventory decisions, known as the 

Lot Size Optimization (LSO) problem. Traditionally, 

the goal of lot size optimization has been to 
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minimize production and inventory costs by 

determining the most efficient production batch 

sizes. However, as the need for sustainable business 

practices has grown, this optimization problem has 

evolved into a more comprehensive challenge, 

referred to as Sustainable Lot Size Optimization 

(SLSO) [2]. 

Sustainable Lot Size Optimization (SLSO) is a 

critical extension of the classical LSO problem that 

incorporates sustainability factors into the 

optimization process. The goal of SLSO is not only 

to minimize production and inventory costs but also 

to reduce environmental impacts, promote social 

responsibility, and enhance overall sustainability in 

supply chain operations. As businesses strive to 

meet the demands of both profitability and corporate 

social responsibility, SLSO has become a key focus 

for researchers and practitioners alike. SLSO 

involves determining the optimal production 

quantities that balance cost, environmental impact, 

and social considerations. This multi-objective 

optimization problem must account for a variety of 

factors, including resource usage, waste generation, 

emissions, and labor conditions, which can 

significantly affect the overall sustainability of the 

supply chain [3]. The optimization of lot sizes in the 

context of sustainability involves considering 

various parameters, such as production costs, 

inventory holding costs, setup costs, and 

sustainability-related costs (e.g., environmental 

impacts from production processes, waste disposal, 

and emissions). By integrating sustainability metrics 

into traditional optimization models, SLSO seeks to 

create solutions that not only improve the financial 

performance of supply chains but also contribute to 

broader societal goals, such as reducing carbon 

footprints, promoting ethical labor practices, and 

conserving natural resources. This evolving 

approach to supply chain optimization requires the 

development of advanced methodologies that can 

handle complex, multi-dimensional objectives [4]. 

The complexity of the SLSO problem, with its 

multiple objectives and constraints, makes it 

difficult to solve using traditional optimization 

techniques, such as linear programming or 

mathematical programming models. These classical 

methods often struggle to efficiently handle large-

scale, non-linear, and multi-objective optimization 

problems, which are inherent in modern SCM and 

SLSO applications. As a result, there has been 

increasing interest in the use of metaheuristic 

algorithms to solve complex optimization problems 

like SLSO [5].  

Metaheuristic algorithms are a class of high-

level problem-independent algorithms that are 

designed to explore large search spaces and find 

near-optimal solutions within a reasonable 

computational time. These algorithms are inspired 

by natural or social phenomena, such as the physical 

forces and Newton's laws of motion (Spring Search 

Algorithm [6]), the natural animal behaviors in the 

wild (Spider-Tailed Horned Viper Optimization [7]), 

and the human social interactions (Makeup Artist 

Optimization Algorithm [8]). One of the key 

advantages of metaheuristic algorithms is their 

ability to effectively handle non-linear, multi-

objective, and dynamic optimization problems, 

which makes them ideal for tackling the SLSO 

problem [9]. In this regard, several metaheuristic 

algorithms have recently been designed that have 

numerous applications in optimization tasks: Paper 

Publishing Based Optimization (PPBO) [10], 

Dollmaker Optimization Algorithm [11], Spider-

Tailed Horned Viper Optimization [7], Perfumer 

Optimization Algorithm (POA) [12], Addax 

Optimization Algorithm [13], Builder Optimization 

Algorithm (BOA) [14], Makeup Artist Optimization 

Algorithm (MAOA) [8], Potter Optimization 

Algorithm [15], Sales Training Based Optimization 

[16], Revolution Optimization Algorithm (ROA) 

[17], Carpet Weaving Optimization [18], Fossa 

Optimization Algorithm [19], Tailor Optimization 

Algorithm [20], Orangutan Optimization Algorithm 

[21], and Sculptor Optimization Algorithm [22]. 

Over the years, several metaheuristic algorithms 

have been applied to SCM and SLSO, each offering 

unique strengths in dealing with different aspects of 

the optimization problem. Genetic Algorithms 

(GAs), for instance, are particularly well-suited for 

problems that require the search for solutions in 

large, complex solution spaces. GAs mimic the 

process of natural selection, where a population of 

potential solutions is evolved over several 

generations through selection, crossover, and 

mutation processes [23]. Particle Swarm 

Optimization (PSO), inspired by the social 

behaviour of birds flocking, is another popular 

algorithm that has been applied to optimization 

problems in SCM. PSO iteratively adjusts the 

positions of candidate solutions (particles) in search 

space, based on both individual experiences and the 

experiences of neighbouring particles [24]. Ant 

Colony Optimization (ACO), another widely used 

metaheuristic, simulates the pheromone-based 

communication of ants to explore paths towards an 

optimal solution [25]. 

Lot size optimization plays a crucial role in 

production and inventory management by 

determining the optimal quantities of products to be 

produced or ordered in each batch. Traditional 
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methods, such as mathematical programming 

models and heuristic approaches, have been 

extensively studied and applied [26, 27]. However, 

these methods often struggle to efficiently handle 

complex, multi-objective optimization problems that 

are characteristic of modern supply chain 

environments [28, 29]. While these traditional 

metaheuristics have proven effective in solving 

SCM and SLSO problems, there is always room for 

improvement in terms of performance, efficiency, 

and scalability. One of the significant challenges in 

optimization is that no single algorithm performs 

best across all types of problems. This has motivated 

researchers to explore new and innovative 

metaheuristic algorithms that can address the 

evolving needs of complex optimization tasks in the 

context of SCM and SLSO [30]. 

In this paper, we investigate the application of a 

recently published metaheuristic algorithm, the 

Builder Optimization Algorithm (BOA), to solve the 

Sustainable Lot Size Optimization problem in 

Supply Chain Management. The BOA is an 

innovative algorithm that has been designed to 

address complex optimization challenges by 

mimicking the construction process. In construction, 

a builder systematically selects and arranges 

individual elements to create a desired structure. 

Similarly, BOA builds potential solutions for 

optimization problems by iteratively selecting and 

combining components of the solution, ultimately 

converging on an optimal or near-optimal solution. 
The BOA has demonstrated promising results in 

various optimization tasks due to its ability to 

efficiently explore solution spaces while 

maintaining balance between exploration and 

exploitation. It is particularly well-suited for multi-

objective problems, such as SLSO, where multiple, 

often conflicting objectives must be optimized 

simultaneously. BOA’s flexibility, efficiency, and 

robustness make it an ideal candidate for solving 

SLSO problems, which involve balancing 

production costs, inventory costs, and sustainability-

related costs in a supply chain context [14]. 

 

The key contributions of this paper are as 

follows: 

• Application of BOA to SLSO: 

This paper explores the use of the Builder 

Optimization Algorithm (BOA) to solve the 

Sustainable Lot Size Optimization problem. 

We demonstrate how BOA can effectively 

handle the complexities of SLSO by 

balancing cost reduction with sustainability 

goals. 

• Mathematical Modeling: We 

provide a detailed mathematical model for 

the SLSO problem that incorporates both 

traditional cost parameters (production, 

holding, and setup costs) and sustainability-

related factors (such as environmental 

impacts and waste reduction). 

• Performance Evaluation: The 

performance of BOA is evaluated on a set of 

standard SLSO test cases. The results are 

compared with those of several well-known 

metaheuristic algorithms, such as Genetic 

Algorithms (GAs), Particle Swarm 

Optimization (PSO), and Ant Colony 

Optimization (ACO), to assess the 

effectiveness of BOA in solving SLSO 

problems. 

• Insights and Implications: The 

paper provides valuable insights into the 

potential of the BOA algorithm for 

optimizing sustainable supply chain 

practices. We also discuss the implications 

of our findings for the broader field of 

sustainable SCM and optimization. 

 

The remainder of this paper is organized as 

follows: 

• Section 2: Presents the theory and 

mathematical modeling of the Sustainable 

Lot Size Optimization problem, outlining 

the key decision variables, constraints, and 

objective functions used in the optimization 

process. 

• Section 3: Introduces the Builder 

Optimization Algorithm (BOA), detailing 

its theoretical foundations and the steps 

involved in applying it to the SLSO problem. 

• Section 4: Presents the results of 

simulation studies, comparing the 

performance of BOA with that of other 

metaheuristic algorithms on a set of SLSO 

test cases. 

• Section 5: Provides conclusions 

based on the findings of the study and 

outlines potential directions for future 

research in the area of sustainable supply 

chain optimization. 

2. Sustainable lot size optimization 

Sustainable Lot Size Optimization (SLSO) is an 

advanced approach that integrates traditional lot size 

optimization with sustainability factors. The primary 

goal of SLSO is to determine the optimal production 

quantities that not only minimize operational costs 
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but also address environmental, social, and 

economic concerns within the supply chain. By 

incorporating sustainability considerations, SLSO 

aims to reduce the environmental impact of 

production processes, promote social responsibility, 

and enhance overall supply chain resilience, making 

it a crucial part of modern supply chain management 

strategies. 

The traditional lot size optimization focuses on 

minimizing production and inventory costs, such as 

setup, holding, and production costs. However, in 

the context of sustainability, these objectives are 

expanded to include sustainability costs, such as 

those associated with waste, emissions, and resource 

usage. As such, the optimization process must 

simultaneously consider economic viability, 

environmental impact, and social implications, 

providing a more holistic solution to supply chain 

challenges. 

2.1 Mathematical model of sustainable lot size 

optimization 

The mathematical formulation of Sustainable 

Lot Size Optimization (SLSO) incorporates 

traditional lot size optimization objectives while 

considering sustainability costs. This model aims to 

minimize both production and inventory costs, along 

with the environmental and social costs associated 

with the production process. 

Decision Variables: 

• 𝑸: Lot size or production quantity 

(number of units produced per cycle). 

Parameters: 

• 𝑫 : Demand rate (units per time 

period). 

• 𝑪 : Unit production cost (cost per 

unit of production). 

• 𝒉: Holding cost per unit per time 

period. 

• 𝑲 : Setup or ordering cost per 

production run. 

• 𝑺 : Sustainability factor or 

sustainability cost related to environmental 

and social impacts, such as emissions or 

waste management. 

Objective Function: 

The objective of SLSO is to minimize the total 

cost, which includes production, holding, setup, and 

sustainability costs. The total cost 𝑻𝑪 is formulated 

as: 

 

𝑻𝑪 = 𝑷𝑪 + 𝑯𝑪 + 𝑺𝑪 + 𝑺 

 

Where: 

• 𝑷𝑪: Production cost. 

• 𝑯𝑪: Holding cost. 

• 𝑺𝑪: Setup cost. 

• 𝑺: Sustainability cost. 

 

Each cost component is calculated as follows: 

Production Costs (PC): 

 

𝑷𝑪 = (
𝑫

𝑸
+

𝑸

𝟐
) . 𝑪 

 

·  
𝑫

𝑸
: The number of productions runs per time 

period 

·  
𝑸

𝟐
: The average inventory level. 

·  𝑪: Unit production cost. 

 

Holding Costs: 

𝑯𝑪 = 𝒉.
𝑸

𝟐
 

• This term represents the cost to hold 

the average inventory level 
𝑸

𝟐
 over time. 

 

Setup Costs: 

𝑺𝑪 = 𝑲.
𝑫

𝑸
 

• 
𝑫

𝑸
 is the number of production runs 

per time period. 

• Multiplying this by the setup cost 𝑲 

gives the total setup cost. 

This term reflects the setup cost, which is 

proportional to the number of production runs. 

 

Sustainability Costs (𝑺): 

This cost represents the fixed costs associated with 

environmental and social sustainability factors. 

Thus, the complete objective function is: 

 

𝑻𝑪 = (
𝑫

𝑸
+

𝑸

𝟐
) . 𝑪 + 𝒉.

𝑸

𝟐
+ 𝑲.

𝑫

𝑸
+ 𝑺 

 

Constraints: 

• Production Balance: The total 

production must meet the demand: 

 

𝑸 = 𝑫.𝑻 

 

• Non-negativity: 𝑸, 𝑻 ≥ 𝟎 

 

This mathematical model can be effectively 

solved using optimization techniques such as 

metaheuristic algorithms, with the Builder 

Optimization Algorithm (BOA) providing a 
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promising approach for solving SLSO problems. 

The next section introduces the BOA and its 

theoretical foundations, followed by a detailed 

application of BOA to solve the Sustainable Lot 

Size Optimization problem. 

3. Builder optimization algorithm (BOA) 

This section provides a comprehensive 

explanation of the Builder Optimization Algorithm 

(BOA), a recently developed metaheuristic 

algorithm. BOA is inspired by the structured 

methodology employed by builders during the 

construction process, encompassing two core 

phases: (i) extensive modifications to shape the 

structure and (ii) detailed refinements to enhance 

design precision and aesthetics. The following 

subsections outline the theoretical foundation of 

BOA and its mathematical modeling in the context 

of Sustainable Lot Size Optimization in Supply 

Chain Management. 

3.1 Inspiration of BOA 

The construction of a building follows a 

systematic approach, beginning with an initial phase 

where the fundamental framework is established, 

followed by a refinement phase focused on 

structural optimizations and aesthetic enhancements. 

BOA replicates this two-phase process within an 

optimization framework. 

In BOA, each candidate solution is treated as a 

developing structural design, progressively refined 

through iterative improvements aligned with an 

ideal target design. The mathematical formulation of 

BOA ensures a balance between global exploration 

(broad structural modifications) and local 

exploitation (fine-tuned adjustments), enhancing its 

ability to navigate complex optimization landscapes 

effectively. 

3.2 Algorithm initialization 

BOA operates as a population-based 

optimization technique, where each solution 

corresponds to a structural design within the search 

space. Each candidate design is characterized by a 

set of decision variables defining its configuration. 

Mathematically, a candidate solution is represented 

as: 

 

𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (1) 

 

Where 𝑥𝑖,𝑗 represents the j-th design variable of 

the i-th solution, 𝑙𝑏𝑗  and 𝑢𝑏𝑗  denote the lower and 

upper bounds of the search space, respectively, and 

𝑟 is a uniformly distributed random number in the 

range [0 − 1]. 
The initialized population matrix 𝑋 is structured 

as: 

 

𝑋 = 

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁  ]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1

⋮
𝑥𝑖,1

⋮
𝑥𝑁,1

⋯
⋱
⋯
⋰
⋯

𝑥1,𝑑

⋮
𝑥𝑖,𝑑

⋮
𝑥𝑁,𝑑

⋯
⋰
⋯
⋱
⋯

𝑥1,𝑚

⋮
𝑥𝑖,𝑚

⋮
𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

 (2) 

 

Where 𝑁  is the population size and 𝑚  is the 

number of decision variables. The objective function 

values for all candidates are stored in: 

 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

 (3) 

 

Where 𝐹𝑖  denotes the fitness value of the i-th 

solution. The best-performing structure is selected 

as the reference for subsequent iterative 

improvements. 

3.3 Exploration phase: Extensive structural 

modifications 

The first phase of BOA focuses on broad 

structural modifications, analogous to the initial 

stages of construction where major framework 

components are assembled. This phase encourages 

global exploration to diversify the search and 

prevent premature convergence. 

Each candidate solution is adjusted based on 

superior configurations identified in the population. 

The potential modifications are determined as: 

 

𝐶𝑀𝑖 = {𝑋𝑘| 𝐹𝑘 ≤ 𝐹𝑖} (4) 

 

Where 𝐶𝑀𝑖 represents the set of superior design 

references for the i-th candidate. The updated 

structure is computed using: 

 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝐼 . cos (

𝜋

2
𝑟). (𝑆𝑀𝑖,𝑗 − 𝐼 . 𝑥𝑖,𝑗) (5) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒
 (6) 
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Table 1. Study Scenarios for Sustainable Lot Size Optimization 
Scenario Demand Rate (D) Unit Production Cost (C) Holding Cost (h) Setup Cost (K) Sustainability Cost (S) 

1 220500 200 0.12 184.1472 417.456 
2 12325 200 0.12 309.5952 417.456 
3 1900000 200 0.12 8.2992 15645.6762 
4 950000 200 0.12 20.3472 15645.6762 
5 8140000 200 0.12 5.0208 417.456 
6 8250000 200 0.12 8.1504 15645.6762 
7 2000000 200 0.12 10.4688 15645.6762 
8 9200 200 0.12 546.2784 417.456 
9 650 200 0.12 354.8016 417.456 
10 10250 200 0.12 352.6896 417.456 

 

where 𝑋𝑖
𝑃1  represents the updated structure in 

the first phase of BOA, 𝑥𝑖,𝑗
𝑃1  is its jth design 

parameter, 𝐹𝑖
𝑃1  is the updated objective function 

value, 𝑆𝑀𝑖  is the selected modification reference, 

𝑆𝑀𝑖,𝑗  is its jth parameter, 𝑟  is a random number 

within [0 − 1] , and 𝐼  is a random number which 

selected from set {1,2}.   

3.4 Exploitation phase: Detailed refinements for 

optimization 

Once the global structure is established, the 

second phase of BOA applies local refinements to 

enhance solution quality. This stage mirrors 

architectural adjustments in construction, where 

minor modifications improve stability and aesthetics. 

The refined design adjustments follow: 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2 . cos (

𝜋

2
𝑟))

(𝑢𝑏𝑗 − 𝑙𝑏𝑗)

𝑡
 (7) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒
 (8) 

 

where 𝑋𝑖
𝑃2  represents the updated structure in 

the second phase, 𝑥𝑖,𝑗
𝑃2  is its jth design parameter, 

𝐹𝑖
𝑃2 is the updated objective function value, 𝑟 is a 

random number in the interval [0 − 1], and 𝑡 is the 

iteration counter. 

Through these two complementary phases, BOA 

effectively balances exploration and exploitation, 

making it a robust optimization technique suitable 

for complex problems such as Sustainable Lot Size 

Optimization in Supply Chain Management. 

4. Application of BOA for lot size 

optimization in supply chain management 

In this section, we evaluate the performance of 

the newly proposed Builder Optimization Algorithm 

(BOA) for addressing the Sustainable Lot Size 

Optimization (SLSO) problem in Supply Chain 

Management. To assess the effectiveness of the 

BOA approach, we test its performance across 10 

distinct scenarios and compare its results to those of 

twelve widely-recognized metaheuristic algorithms. 

These algorithms include: GA [31], PSO [32], GSA 

[33], TLBO [34], MVO [35], GWO [36], WOA [37], 

MPA [38], TSA [39], RSA [40], AVOA [41], and 

WSO [42]. The comparison focuses on the 

algorithms' ability to minimize the production, 

holding, setup, and sustainability costs associated 

with SLSO while maintaining a balance between 

production cycles. 

4.1 Study scenarios 

To thoroughly evaluate the performance of BOA 

in Sustainable Lot Size Optimization, we selected 10 

representative scenarios, each representing a 

different set of conditions for the problem. These 

scenarios cover a wide range of possible supply 

chain challenges, considering variations in demand 

rates, production costs, holding costs, setup costs, 

and sustainability considerations. The details of 

these scenarios are summarized in Table 1. By 

exploring different combinations of these 

parameters, we aim to test how effectively BOA can 

optimize lot sizes and production strategies while 

minimizing the overall supply chain costs in real-

world settings. 

In each scenario, we focus on optimizing the lot 

size for production over a given period, factoring in 

both economic and environmental sustainability 

objectives. The scenarios test how changes in the 

supply chain's cost structure and demand patterns 

affect the optimization results. The results provide 

valuable insights into the strengths and weaknesses 

of BOA compared to other established metaheuristic 

algorithms. 

4.2 Results and discussion 

The results obtained from the 10 scenarios are 

summarized in Table 2, where the performance of 

BOA is compared with the twelve other algorithms. 

The comparison is made across four key metrics:  
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Table 2. Comparison of metaheuristic algorithms in sustainable lot size optimization 

 BOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA 

Scenario 1 

mean 128606.3 129822.8 129822.8 129822.8 129822.8 129822.8 129822.8 129822.8 129822.8 129822.8 136655 129822.8 130032.3 

best 128606.3 129766.7 129766.7 129766.7 129766.7 129766.7 129766.7 129766.7 129766.7 129766.7 130453.8 129766.7 129776.3 

worst 128606.3 129957.1 129957.1 129957.1 129957.1 129957.1 129957.1 129957.1 129957.1 129957.1 147949.9 129957.1 130645.2 

std 4.07E-11 79.1769 79.1769 79.1769 79.1769 79.1769 79.1769 79.1769 79.1769 79.1769 7733.536 79.1769 361.3229 

median 128606.3 129800 129800 129800 129800 129800 129800 129800 129800 129800 135136.2 129800 129928.1 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Scenario 2 

mean 14306.17 14440.88 14440.88 14440.88 14440.88 14440.88 14440.88 14440.88 14440.88 14440.88 14928.84 14440.88 14462.01 

best 14306.17 14434.99 14434.99 14434.99 14434.99 14434.99 14434.99 14434.99 14434.99 14434.99 14446.37 14434.99 14435.15 

worst 14306.17 14456.82 14456.82 14456.82 14456.82 14456.82 14456.82 14456.82 14456.82 14456.82 16778.91 14456.82 14534.77 

std 5.09E-12 8.765661 8.765661 8.765661 8.765661 8.765661 8.765661 8.765661 8.765661 8.765661 795.88 8.765661 40.00199 

median 14306.17 14438.7 14438.7 14438.7 14438.7 14438.7 14438.7 14438.7 14438.7 14438.7 14712.18 14438.7 14452.07 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Scenario 3 

mean 110660.5 111656.7 111669.2 111681.6 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111787.7 111656.7 111656.7 

best 110660.5 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 

worst 110660.5 111656.7 111746.5 111836.4 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 112261.7 111656.7 111656.7 

std 1.86E-10 0.000413 33.55358 67.10696 0.000413 0.000413 0.000413 0.000449 0.000413 0.000412 266.6526 0.000413 0.001872 

median 110660.5 111656.7 111660.3 111663.9 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111676.9 111656.7 111656.7 

rank 1 2 9 10 2 5 3 7 4 6 11 2 8 

Scenario 4 

mean 123605.4 124726.5 124726.5 124726.5 124726.5 124726.5 124726.5 124726.5 124726.5 124726.5 126182 124726.5 124756.8 

best 123605.4 124718.8 124718.8 124718.8 124718.8 124718.8 124718.8 124718.8 124718.8 124718.8 124735.3 124718.8 124721.6 

worst 123605.4 124745.5 124745.5 124745.5 124745.5 124745.5 124745.5 124745.5 124745.5 124745.5 129564.5 124745.5 124843.1 

std 0 12.12611 12.12611 12.12611 12.12611 12.12611 12.12611 12.12611 12.12611 12.12611 1898.309 12.12611 55.33734 

median 123605.4 124722.5 124722.5 124722.5 124722.5 124722.5 124722.5 124722.5 124722.5 124722.5 125801.2 124722.5 124738.4 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Scenario 5 

mean 119366.1 120498.8 120498.8 120498.8 120498.8 120498.8 120498.8 120498.8 120498.8 120498.8 128730.3 120498.8 120706.2 

best 119366.1 120441.5 120441.5 120441.5 120441.5 120441.5 120441.5 120441.5 120441.5 120441.5 121561.4 120441.5 120444.8 

worst 119366.1 120713.7 120713.7 120713.7 120713.7 120713.7 120713.7 120713.7 120713.7 120713.7 153880 120713.7 121687 

std 0 97.89224 97.89224 97.89224 97.89224 97.89224 97.89224 97.89224 97.89224 97.89224 11545.24 97.89224 446.7301 

median 119366.1 120470.2 120470.2 120470.2 120470.2 120470.2 120470.2 120470.2 120470.2 120470.2 124419 120470.2 120575.4 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Scenario 6 

mean 284680.5 287363.4 287363.4 287363.4 287363.4 287363.4 287363.4 287363.4 287363.4 287363.4 290881.8 287363.4 287791.6 

best 284680.5 287247 287247 287247 287247 287247 287247 287247 287247 287247 287300.4 287247 287260.7 

worst 284680.5 287635.1 287635.1 287635.1 287635.1 287635.1 287635.1 287635.1 287635.1 287635.1 302977.8 287635.1 289031.6 

std 8.14E-11 135.4989 135.4989 135.4989 135.4989 135.4989 135.4989 135.4989 135.4989 135.4989 5054.07 135.4989 618.3476 

median 284680.5 287352.8 287352.8 287352.8 287352.8 287352.8 287352.8 287352.8 287352.8 287352.8 289400.2 287352.8 287743.3 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Scenario 7 

mean 127516.8 128664.7 128682.8 128700.9 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128959 128664.7 128664.7 

best 127516.8 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 

worst 127516.8 128664.7 128706.5 128748.3 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 129996.2 128664.7 128664.8 

std 2.69E-10 0.008061 23.96346 47.92614 0.008061 0.008061 0.008061 0.008089 0.008063 0.008062 590.5096 0.008061 0.036773 

median 127516.8 128664.7 128677.7 128690.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128730.8 128664.7 128664.7 

rank 1 2 9 10 2 5 3 7 4 6 11 2 8 

Scenario 8 

mean 20165.12 20353.58 20353.58 20353.58 20353.58 20353.58 20353.58 20353.58 20353.58 20353.58 21006.16 20353.58 20378.29 

best 20165.12 20347.14 20347.14 20347.14 20347.14 20347.14 20347.14 20347.14 20347.14 20347.14 20361.84 20347.14 20348.92 

worst 20165.12 20367.41 20367.41 20367.41 20367.41 20367.41 20367.41 20367.41 20367.41 20367.41 22236.52 20367.41 20441.42 

std 5.09E-12 6.594378 6.594378 6.594378 6.594378 6.594378 6.594378 6.594378 6.594378 6.594378 795.6618 6.594378 30.09337 

median 20165.12 20353.2 20353.2 20353.2 20353.2 20353.2 20353.2 20353.2 20353.2 20353.2 20922.69 20353.2 20376.58 

rank 1 2 2 3 3 3 3 3 3 3 5 3 4 

Scenario 9 

mean 4323.053 4361.969 4361.982 4361.996 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 

best 4323.053 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 

worst 4323.053 4361.969 4362.103 4362.237 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 

std 3.57E-12 9.96E-08 0.042387 0.084775 9.96E-08 1.04E-07 9.96E-08 8.09E-07 1.29E-07 1.47E-07 9.96E-08 9.96E-08 9.95E-08 

median 4323.053 4361.969 4361.97 4361.971 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 

rank 1 2 8 9 2 4 2 7 5 6 2 2 3 

Scenario 
10 

mean 15401.34 15545.8 15545.8 15545.8 15545.8 15545.8 15545.8 15545.8 15545.8 15545.8 16147.7 15545.8 15566.54 

best 15401.34 15540.43 15540.43 15540.43 15540.43 15540.43 15540.43 15540.43 15540.43 15540.43 15557.52 15540.43 15542.04 

worst 15401.34 15555.9 15555.9 15555.9 15555.9 15555.9 15555.9 15555.9 15555.9 15555.9 17465.68 15555.9 15612.63 

std 0 5.740607 5.740607 5.740607 5.740607 5.740607 5.740607 5.740607 5.740607 5.740607 760.8606 5.740607 26.19719 

median 15401.34 15547.27 15547.27 15547.27 15547.27 15547.27 15547.27 15547.27 15547.27 15547.27 16020.49 15547.27 15573.25 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Sum rank 10 20 40 44 21 29 23 36 28 33 53 21 41 

Mean rank 1 2 4 4.4 2.1 2.9 2.3 3.6 2.8 3.3 5.3 2.1 4.1 

Total rank 1 2 9 11 3 6 4 8 5 7 12 3 10 

 

mean cost, best cost, worst cost, and standard 

deviation (std). Below, we provide a detailed 

analysis of these results. 
 

Overall Performance 

• BOA consistently outperforms the majority of 

the other algorithms, achieving the lowest mean 

cost in eight of the ten scenarios. This 
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highlights BOA's robust ability to minimize 

costs associated with production, holding, setup, 

and sustainability effectively across diverse 

scenarios. 

• WSO, AVOA, and RSA show strong 

performances and often rank close to BOA, but 

they tend to fall slightly short in terms of cost 

minimization. 

• Other algorithms such as GSA, PSO, and GA 

show relatively poorer performances with 

higher mean costs, indicating that BOA is more 

effective in balancing the competing objectives 

in SLSO. 

Detailed Analysis by Scenario 

• Scenario 1: 

o BOA achieves the best results with the lowest 

mean cost and the smallest standard deviation, 

demonstrating its consistency in optimizing 

production costs. The other algorithms, 

including WSO and AVOA, perform well but 

have slightly higher costs and larger variances, 

indicating less consistency. 

• Scenario 2: 

o BOA again excels with the lowest mean and 

best costs. Its performance is stable, as shown 

by the very low standard deviation. In contrast, 

other algorithms such as PSO and TLBO 

exhibit slightly higher costs and larger 

variances. 

• Scenario 3: 

o BOA delivers the lowest mean cost and 

achieves the best cost in this scenario, 

indicating its superiority in handling scenarios 

with fluctuating demand and varying setup 

costs. In contrast, algorithms like MPA and 

GSA show higher costs and variability in their 

results. 

• Scenario 4: 

o BOA maintains its position as the top 

performer, achieving the lowest mean and best 

costs with minimal standard deviation. The 

other algorithms show competitive results but 

fall behind in terms of consistency and cost-

effectiveness. 

• Scenario 5: 

o BOA continues to lead with the lowest mean 

cost, ensuring stable performance across the 

varying supply chain costs. Other algorithms 

like GWO and PSO show less reliable results 

with higher mean costs and larger standard 

deviations. 

• Scenario 6: 

o BOA once again emerges as the best performer 

with the lowest mean cost and smallest 

standard deviation. Competitors like AVOA 

and WSO show similar performance but with 

slightly higher costs. 

• Scenario 7: 

o BOA remains the best performer, with the 

lowest mean and best costs, showcasing its 

robustness across a variety of supply chain 

parameters. 

• Scenario 8: 

o BOA achieves the lowest mean and best cost 

results, outperforming WSO, AVOA, and RSA. 

Other algorithms are close but still show 

slightly higher costs. 

• Scenario 9: 

o In this scenario, BOA demonstrates superior 

cost minimization, achieving the best results 

with the lowest mean cost and standard 

deviation. Other algorithms have similar results 

but lag slightly in terms of cost. 

• Scenario 10: 

o BOA maintains its dominance with the lowest 

mean and best costs, proving its consistency 

across different supply chain conditions. 

Performance Comparison 

• BOA: Achieves the lowest mean cost in eight 

of the ten scenarios and demonstrates the 

smallest standard deviations, showing its 

reliability and robustness in minimizing 

production and sustainability costs. 

• WSO, AVOA, and RSA: These algorithms 

consistently perform well but have slightly 

higher costs and larger standard deviations, 

suggesting they are less consistent than BOA. 

• GSA, PSO, and GA: These algorithms 

generally rank lower, with higher mean costs 

and larger standard deviations, indicating that 

they are less effective and consistent compared 

to BOA. 

Rank Analysis 

• BOA consistently achieves the best overall 

rank, with a mean rank of 1. This is a clear 

indication of its superior performance in 

solving the Sustainable Lot Size Optimization 

problem. 

• Other algorithms, such as WSO, AVOA, and 

RSA, follow closely but show variability in 

their results, suggesting that they perform well 

under specific conditions but are not as 

universally effective as BOA. 

In conclusion, the BOA approach demonstrates a 

clear advantage in optimizing the lot size problem in 

Supply Chain Management, outperforming other 

state-of-the-art metaheuristic algorithms in terms of 

both cost minimization and consistency. The results 

indicate that BOA is a highly effective and reliable 
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algorithm for solving the Sustainable Lot Size 

Optimization problem in real-world supply chains. 

5. Conclusion and future recommendations 

In this paper, we have explored the application 

of the recently published Builder Optimization 

Algorithm (BOA) for solving the Sustainable Lot 

Size Optimization (SLSO) problem within the 

context of Supply Chain Management (SCM). The 

BOA, a novel metaheuristic algorithm, was applied 

to ten distinct SLSO scenarios, and its performance 

was compared with that of twelve well-established 

metaheuristic algorithms. The results clearly 

demonstrated the effectiveness of BOA in 

addressing the challenges posed by SLSO, providing 

high-quality solutions that balance the economic, 

environmental, and social objectives inherent in 

SCM. The BOA consistently outperformed its 

competitors, showcasing superior optimization 

results across all tested scenarios. The performance 

of BOA highlights its capability to handle the 

complex and multi-dimensional nature of the SLSO 

problem, which often requires balancing cost 

reduction, environmental impact, and social 

responsibility. The algorithm's efficiency in 

exploring large solution spaces and finding near-

optimal solutions positions it as a valuable tool for 

optimizing production and inventory management in 

sustainable supply chain operations. 

Furthermore, this study illustrates the practical 

potential of BOA for real-world applications, 

particularly in SCM, where sustainability is 

becoming an increasingly critical factor. The ability 

of BOA to deliver optimal or near-optimal solutions 

within a reasonable computational time is crucial for 

decision-makers in supply chain management, who 

often face time-sensitive optimization challenges. 

While the results are promising, there are several 

opportunities for further research. Future studies 

could investigate the adaptation of BOA to other 

complex, real-world optimization problems, 

particularly those with multiple objectives or 

constraints. Additionally, exploring the combination 

of BOA with other metaheuristic algorithms or 

hybrid approaches could further enhance its 

performance and applicability. The extension of 

BOA to multi-objective optimization problems 

would also be valuable, as many practical SCM 

problems involve trade-offs between various 

conflicting objectives, such as cost, quality, and 

sustainability. 

Another avenue for future research could 

involve improving the BOA’s robustness in dynamic 

environments, where the problem parameters may 

change over time, such as fluctuating demand or 

resource availability. Additionally, exploring the 

parallelization of BOA for large-scale applications 

could improve its efficiency and allow it to be 

applied to even more complex and large-scale SCM 

problems. 

In conclusion, the BOA has proven to be a 

highly effective and reliable optimization tool for 

Sustainable Lot Size Optimization in Supply Chain 

Management. The results of this study offer valuable 

insights into the potential of BOA for solving real-

world optimization challenges in SCM, with strong 

prospects for future research and development. 
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