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Abstract 

With the rise of chronic diseases around the globe, 

people need intelligent and adaptive personalized 

pathways for treatment that are capable at responding to 

dynamic health profiles of patients captured through IoT 

sensor networks. Approaches for management of chronic 

diseases usually pursue static patient stratifications and 

centralized learning paradigms, which are inadequate 

because they do not facilitate adaptability over time with 

poor scalability and have security vulnerabilities. 

Moreover, they suffer sample inefficiencies and late 

convergences when they are applied to heterogeneous 

patient populations, unlike conventional reinforcement 

learning (RL) models in healthcare. Therefore, this work 

proposes a framework that comprehensively integrates 

treatment pathway learning with reinforcement learning 

and patient clustering for novel, fully proposed IoT-based 

chronic disease management. The combined integration of 

five advanced techniques includes: (1) Model-Agnostic 

Meta-Learning (MAML) enables quick RL policy 

adaptation to new patient clusters; (2) Dynamic 

GraphSAGE real-time captures both construction patient 

similarity graphs and maximizes robustness of the state 

representation; (3) Federated Proximal Policy 

Optimization (FedPPO) preserves the optimization of 

policies in a confidentiality point of view without 

centralizing data aggregation; (4) Multi-Agent Deep 

Deterministic Policy Gradient (MADDPG) allows 

collaborative learning of policies among patients' clusters, 

while (5) contrastive learning based on SimCLR delivers 

discriminative health state embeddings from unsupervised 

approaches. Therewith, the methods are carefully chosen 

to support the system goals in terms of rapid adaptation, 

privacy preservation, efficient representation, and 

decentralized cooperating sets. The consolidated pipeline 

yields a 50% increase in the rate of convergence of policies, 

a 20-25% increase in the success rates of treatments, and a 

reduction of 15-20% on the number of chronic 

exacerbations in patients without compromise on low 

communication overhead in federated settings. This makes 

a significant contribution to some real-time and personal, 

privacy-protected chronic disease management systems 

based on IoT data streams. To evaluate our proposed 

framework, the hybrid dataset was constructed blending 

together the statistical profiles derived from the real-world 

healthcare datasets, such as the MIMIC-III Clinical 

Database or UK Biobank. These datasets consisted of 

distributions of physiological parameters i.e. heart rate, 

blood pressure, blood glucose, etc., thereby allowing for 

the computation of realistic simulations of chronic diseases, 

particularly diabetes, hypertension, and COPD-associated 

diseases. The combined database had over 600,000 patient 

days of healthcare data, during which 5,000 trajectories for 

different patient groups were simulated for 90 days each in 

process. The composite dataset was witnessed as being an 

excellent facilitator for controlled experimental 

performance evaluation of diverse scenarios of chronic 

health sets. 

Keywords: Chronic disease management, 

Reinforcement learning, IoT healthcare, Federated 

learning, Patient clustering, Process. 

1. Introduction 

Chronic diseases like diabetes, cardiovascular 

disorders, and respiratory illnesses are gaining on 

global healthcare systems in terms of the burden they 

carry. Technological advancement in the Internet of 

Things (IoT) has changed the game, allowing 

continuous real-time monitoring of physiological 

parameters by means of wearable sensors and remote 

devices. The new revolution in real-time data 

collection creates powerful dynamics in profiling the 

health and providing timely intervention. However, a 

major challenge remains: effective translation of the 

large streams of IoT sensor data into smart 

personalized treatment pathways. Current approaches 

to chronic disease management [1-3] are little more 

than static patient segmentations and retrospective 

analyses, making them unresponsive to changes in 

the evolving health of patients. In addition, 

conventional machine frameworks used in traditional 

healthcare, and RL models for healthcare, are highly 
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centralized with massive labelled data and vast 

computational resources. Obstacles such as little 

generalization to a new patient profile, high sample 

complexity, slow convergence of policy, and very 

high risks related to data privacy breaches are quite 

severe. Centralized RL models largely fail to 

represent the complexity in dynamic inter-patient 

relationships and are unable to scale effectively in 

decentralized IoT environments. It is upon this 

pressing need that there is ever intensifying urgency 

for new-age, adaptive, privacy-preserving and 

computationally efficient solutions for chronic 

disease management, now more than ever. This paper 

presents a new multi-methods framework that can 

intelligently merge reinforcement learning into 

possible dynamic patient clustering based on IoT data 

streams to alleviate the limitations discussed above. 

By relying on techniques like Model-Agnostic Meta-

Learning (MAML), Dynamic GraphSAGE, 

Federated Proximal Policy Optimization (FedPPO), 

Multi-Agent Deep Deterministic Policy Gradient 

(MADDPG), and SimCLR-based contrastive 

learning, the study realizes all the objectives of rapid 

policy adaptation, efficient representation of health 

states, decentralized optimization, and robust privacy 

operations. Thus, the system could be exploited 

transparently to change the patient state, personalize 

pathways for treatment, and protect against revealing 

sensitive health information, without compromising 

learning performance sets. This forms a significant 

stride in the area of IoT-driven chronic disease care, 

filling critical gaps in personalization and 

adaptability in real-time, as well as privacy within the 

learning process. 

The rest of this paper is organized as follows. A 

complete annotated review of the related research 

described in reinforcement learning and IoT-

supported healthcare systems is already provided in 

Chapter 2. Architecture section on the designed 

structure explicitly explores each component of the 

model: meta-learning, federative learning, graph 

based encoding and cooperative agent design. The 

section equally outlines the experimental setups, 

dataset construction, training protocols, and 

validation metrics. The fifth section compares the 

results with different benchmarks and shows the 

practical usage of an individual patient scenario. 

Section 6 will be the conclusion: a brief discussion 

and examination of any implications, limitations, and 

suggestions for future research agendas. 

1.1 Motivation & contribution 

The inspiration behind this piece of work comes 

from glaring gaps in the interplay between chronic 

disease management with the IoT sensor network and 

machine learning techniques. The existing solutions 

are enabling passive health monitoring; however, 

they fall short of providing proactive, adaptive, and 

highly personalized pathways for treatment. Chronic 

diseases are quite complex and heterogeneous in their 

progression; hence, models need to generalize across 

'what can be seen as' diverse patient profiles while 

being sensitive towards variations based on real-time 

capture. Additionally, most reinforcement learning 

methodologies are centralized, presenting serious 

issues in terms of scalability, latency, and adherence 

to privacy regulations such as HIPAA and GDPR. 

With these limitations, a multi-dimensional 

innovative solution will be sought to meet the 

changing needs of chronic care characterized by 

dynamic health profiles, decentralized data sources, 

and rigorous privacy specifications. 

I make many significant contributions to the 

aforementioned study. To begin with, it applies 

MAML to drastically minimize the adaptation time 

of reinforcement learning agents in adopting new 

patient clusters. Additionally, it uses Dynamic 

GraphSAGE to provide real-time generation of 

dynamic patient similarity graphs which can be 

treated as valuable inputs to the RL agent and capture 

very complex relations between patients. It makes use 

of Federated Proximal Policy Optimization 

(FedPPO) to enable policy learning under privacy 

protections across decentralized devices of patients 

without requiring raw health data to leave the local 

environment. Finally, Multi-Agent Deep 

Deterministic Policy Gradient (MADDPG) is applied 

for decentralized collaboration between patient 

clusters involving learning and interaction across 

clusters. Lastly, SimCLR-based contrastive learning 

is applied to pre-train health state encoders thus 

increasing the discriminative capacity of the system 

in not requiring labelled data. Collectively, these 

contributions establish a highly adaptable, privacy-

sensitive, and computationally efficient framework 

that results in the enhancement of the chronic disease 

management practice with a 50% increase in policy 

convergence speed, 20-25% improvements in 

treatment success rates, and 15-20% less chronic 

exacerbation events. This complete integration of 

cutting-edge methods into one system is an 

advancement for intelligent health enables. 

2. Review of existing models used for 

healthcare IoT optimization Analysis 

The uses of machine learning (ML) in predicting 

chronic diseases have gained ground significantly 
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Table 1. Model’s Empirical Review Analysis 

Reference Method Main Objectives & 

Contributions 

Findings Limitations 

[1] Banday 

et al. 

Quantum-assisted 

Machine Learning 

Heart disease prediction 

using quantum computing 

Demonstrated feasibility 

of quantum-Machine 

Learning integration 

Technology still in 

early stage 

[2] Tu et al. 

Traditional 

Machine Learning 

on chronic DBs 

Osteoporosis prediction using 

population-scale chronic 

disease data 

Broadened scope of 

Machine Learning in 

public health analytics 

Generalizability to 

rare diseases 

untested 

[3] Yang et 

al. 

Bioinformatics 

and Machine 

Learning 

Linking inflammation genes 

across CKD and coronary 

artery disease 

Revealed cross-disease 

molecular patterns 

Lacks clinical 

validation 

[4] Metherall 

et al. 

Home-monitoring 

and Machine 

Learning 

Home-based CKD 

monitoring model 

Improved accessibility 

and patient engagement 

Dependent on user 

adherence and 

sensor accuracy 

[5] Ghosh 

and 

Khandoker 

Nomogram-based 

Machine Learning 

Predicting CKD stages 3-5 

with a clinical Machine 

Learning tool 

Effective stage-specific 

prediction 

Limited scalability 

across ethnic cohorts 

[6] Islam et 

al. 

Social 

determinant-

integrated 

Machine Learning 

Holistic CKD prediction in 

type-2 diabetes using 

sociodemographic data 

Increased prediction 

contextualization 

Dataset bias risk 

from non-clinical 

variables 

[7] Liu et al. 

Machine Learning 

for pain after 

childbirth 

Chronic pain prediction in 

postpartum patients 

Opened new Machine 

Learning research in 

underexplored chronic 

pain 

Lack of large-scale 

clinical datasets 

[8] 

Duckworth 

et al. 

Longitudinal 

Machine Learning 

on aging 

Tracked healthy aging vs 

chronic disease over time 

Differentiated aging 

profiles and mHealth 

engagement patterns 

Requires consistent 

user data input over 

long durations 

[9] Cohen et 

al. 

Machine Learning 

on partial EMRs 

Modeling healthy aging and 

longevity from partial EHRs 

Identified key aging 

biomarkers 

Partial EHRs limit 

data completeness 

[10] Luo et 

al. 

COVID-specific 

CKD mortality 

Machine Learning 

Predicting COVID mortality 

in CKD patients 

High mortality risk 

identified in comorbid 

profiles 

Focus limited to 

pandemic conditions 

[11] Rong et 

al. 

Online Machine 

Learning risk tool 

Sarcopenia risk assessment in 

chronic disease contexts 

Usable risk prediction 

tool for public health 

Dependent on self-

reported data 

accuracy 

[12] 

Bialonczyk 

et al. 

Cost-effective 

Machine Learning 

detection 

Vascular calcification 

detection balancing cost and 

accuracy 

Established practical 

Machine Learning 

deployment model 

Sacrifices some 

accuracy for cost 

savings 

[13] Ahmed 

et al. 

Wildlife chronic 

disease Machine 

Learning 

Machine Learning prediction 

of chronic wasting disease in 

deer 

Extended Machine 

Learning to non-human 

chronic conditions 

Transferability to 

human diseases 

limited 

[14] Vanden 

Broecke et 

al. 

Veterinary 

Machine Learning 
Early CKD detection in cats 

Preventive detection 

success in veterinary 

applications 

Species-specific 

limitations 

[15] 

Chowdhury 

et al. 

Longitudinal 

Machine Learning 

for T1D and CKD 

CKD prediction in type 1 

diabetes over time 

Captured progression 

patterns via long-term 

tracking 

May not generalize 

to non-diabetic 

patients 

[16] Li et al. 

Immune-gene 

Machine Learning 

for COPD 

Prognostic prediction using 

immune-related gene 

expression 

Multi-omic approach 

enhanced outcome 

prediction 

Requires extensive 

molecular profiling 

[17] Nneji et 

al. [17] 

Feature selection 

for CKD 

Interpretability-enhanced 

CKD model 

Improved transparency 

and feature importance 

ranking 

Possible loss in raw 

predictive power 

[18] Gogoi 

and Valan 

SMOTE vs SHAP 

in CKD modeling 

Compare oversampling 

(SMOTE) with explainability 

(SHAP) techniques 

SHAP improved model 

interpretability with 

minimal performance 

trade-off 

Limited to balanced 

dataset scenarios 
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[19] Bijoy et 

al. 

RPA + Mobile 

Machine Learning 

for CKD 

Automated CKD detection 

using robotic process 

automation via mobile 

Promising for early 

intervention in resource-

poor settings 

App dependency and 

limited clinical 

testing 

[20] Hsu et 

al. 

Machine Learning 

for CKD-induced 

osteoporosis 

Predicting osteoporosis in 

CKD stages 3–5 

Demonstrated specific 

comorbidity risk 

stratification 

CKD-only focus, 

lacks broader 

generalization 

[21] 

Demiray et 

al. 

Activation-aware 

patient 

classification 

Customized Machine 

Learning-based intervention 

based on patient activation 

levels 

Enhanced behavioral 

intervention targeting 

Requires 

psychographic data 

collection 

[22] Si et al. 
Heart disease risk 

in elderly 

Machine Learning modeling 

for heart disease in older 

hypertensive patients 

Age-specific predictions 

increased model 

relevance 

Focused on elderly 

only 

[23] Tsai et 

al. 

Multimodal 

multitask Machine 

Learning 

Combined heterogeneous 

data for broad chronic disease 

prediction 

Better performance 

across various chronic 

conditions 

Requires integration 

of multiple data 

formats 

[24] 

Moumin et 

al. 

Ensemble vs Non-

Ensemble models 

Compared model types for 

heart disease prediction 

Ensembles performed 

better overall 

Higher complexity 

and resource 

requirements 

[25] Oh et al. 
CKD risk post-

renal surgery 

Machine Learning-based 

perioperative risk prediction 

of CKD post kidney cancer 

surgery 

Offered surgical risk 

insights 

Post-surgical only 

not useful for 

general CKD 

prediction 

   

 

over the years, addressing a broad range of disorders 

and advancing research methods. The studies extend 

from the traditional disease prediction to newly 

developing hybrid and explainable models. Latest 

trends of research have shown an increasing focus 

on chronic kidney disease (CKD), particularly 

concerning its comorbidities, which have mostly 

emphasized enhancing predictive accuracy, 

interpretability, and clinical relevance sets. 

Iteratively, Next, as per Table 1, The oldest research 

study in this review by Banday et al. [1] offers a 

quantum-assisted machine learning framework for 

heart disease prediction and thus presents an 

important step toward the final merger of quantum 

computing with medical applications of machine 

learning. Tu et al. [2] study osteoporosis prediction 

using chronic disease databases, thus casting the net 

more widely in population health analytics. 

Following that very line, Yang et al. [3] used 

bioinformatics and machine learning techniques to 

link inflammatory response genes across CKD and 

coronary artery disease, which indicates molecular 

interrogation of deeper disease interconnectivity. 

Metherall et al. [4] and Ghosh and Khandoker [5] 

proceeded with diagnostic enhancements for CKD: 

the first with important home-monitoring 

measurements for CKD, whereas the second through 

a nomogram predicting CKD stages 3-5. 

Islam et al. [6] critically integrated social 

determinants of health in ML frameworks for 

predicting CKD in type-2 diabetes patients as an 

example of the holistic patient profiling shift. Liu et 

al. [7] had the pain predicting model after childbirth-

energy for ML in a new, under-explored chronic pain 

field. Duckworth et al. [8], on the other hand, used 

longitudinal ML to distinguish between healthy 

aging and chronic disease trajectories in process. 

They also studied user engagement in mHealth 

applications with implications for ML performance 

sets. Cohen et al. [9] uses machine learning on partial 

electronic medical records to model healthy aging 

trajectories, identifying biomarkers and genetic 

factors linked to human longevity across diverse 

populations. 

Luo et al. [10] tackled the aspect of mortality 

prediction among patients with CKD who contracted 

COVID-19. Rong et al. [11] constructed an online 

tool for assessing the risk of sarcopenia among 

chronic diseases patients. Bialonczyk et al. [12] 

found a justifiable cost: accuracy ratio in vascular 

calcification detection and practical concerns in 

healthcare ML. Ahmed et al. [13], through their 

work, also extended the use of chronic disease ML 

into wildlife and predicted chronic wasting disease 

among deer. Vanden Broecke et al. [14] bring forth 

the veterinary aspect of health, where ML gets 

employed for early detection of CKD in cats.  

Chowdhury et al. [15] longitudinally investigated 

CKD prediction in type 1 diabetes, while Li et al. 

[16] used immune-related gene expression to predict 

prognosis in COPD, exemplifying multi-omic 

integration. A feature selection framework 

enhancing the interpretability of CKD was 

introduced by Nneji et al. [17] onwards with Gogoi 
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and Valan [18], who further on compared SMOTE 

and SHAP methods for CKD modeling. Robotic 

process automation for early detection of CKD by 

mobile applications was also suggested by Bijoy et 

al. [19] and indicates a move toward automation in 

diagnostics.  

Hsu et al. [20] studied the prediction of 

osteoporosis in patients at stages 3-5 of CKD. 

Demiray et al. [21] engaged their works toward 

patient classification using activation level and 

hence machine learning for intervention 

customization in chronic conditions. Si et al. [22] 

dedicated attention to older hypertensive patients 

and examined heart disease risk for them, hence 

contributing to age-specific modeling. Tsai et al. 

[23] proposed a multimodal multitask learning 

network that combined heterogeneous data types for 

predictions in broad chronic diseases. On the other 

side, Moumin et al. [24] compared ensemble models 

against non-ensemble models for heart disease, 

while Oh et al. [25] studied the risk of CKD after 

surgery in patients with renal cancer and landed the 

review round with perioperative prognostics. 

3. Proposed model 

This section deals with designing an Improved 

Method for Chronic Disease Management Using 

MAML Dynamic GraphSAGE and Federated PPO in 

IoT Environments to manage the issues of low 

efficiency and high complexity prevailing in the 

existing models. The proposed model as per Fig. 1 

will be defined as multi-layered structures that 

combine dynamic clustering, real-time state encoding, 

federated reinforcement learning, and meta-

adaptation for optimal chronic disease pathways in 

treatment environments driven by IoT. The design 

approach begins by modelling the patient IoT data 

streams xi(t) as a continuous-time stochastic process 

where t∈R+ represents timestamps and 'i' indexes 

individual patients. The health dynamics of each 

individual patient are captured using a time 

dependent latent state si(t) created with a contrastive 

representation learning method in process. 

The health state encoder fθ is learned using a 

contrastive loss LSimCLR defined via Eq. (1, 

 

𝐿𝑆𝑖𝑚𝐶𝐿𝑅 

=  −𝑙𝑜𝑔 (
𝑒𝑥𝑝 (

𝑠𝑖𝑚(𝑓𝜃(𝑥𝑖),𝑓𝜃(𝑥𝑗))

𝜏
)

∑ 𝐼[𝑘 ≠ 𝑖]𝑒𝑥𝑝 (
𝑠𝑖𝑚(𝑓𝜃(𝑥𝑖),𝑓𝜃(𝑥𝑘))

𝜏
)2𝑁

𝑘=1

) 

(1) 

 

Where sim(⋅,⋅) represents the cosine similarity, τ is a 

temperature parameter, and xj is a positive sample for 

xi in process. This ensures highly discriminative and 

structured embeddings for each patient's ongoing 

health states. Subsequently, they dynamically cluster 

patients based on their latent embeddings using a 

graph-based inductive learning technique in process. 

The patient similarity graph G(V, E) is modeled 

where V are the patient nodes and E is weighted 

edges using health similarity metrics. 

 

 
Figure. 1 Model Architecture of the Proposed Analysis 

Process 
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The Dynamic GraphSAGE framework is utilized 

for neighbourhood aggregations. The node 

embedding update at layer (l+1) is defined Via Eq. 

(2), 

 

ℎ𝑣(𝑙 + 1) =  𝜎(𝑊(𝑙)

·  𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸(𝑙)({ℎ𝑣(𝑙)}

∪  {ℎ𝑢(𝑙), ∀𝑢 ∈ 𝑁(𝑣)})) 

(2) 

 

Where, σ is a non-linear activation, N(v) contains 

the neighbourhood of node v, and W(l) are trainable 

parameters in process. Resource management for 

each identified patient cluster is assigned to an 

individual RL agent that has been initialized via 

Meta-learning using the MAML Process. Under the 

MAML framework, the aim is to find a set of policy 

parameters θ that can quickly adapt to a new task 

(new patient cluster) given a small number of 

gradient steps. Via Eq. (3) the Model describes the 

inner loop adaptation for task Ti, 

 

𝜃𝑖′ =  𝜃 −  𝛼𝛻𝜃 𝐿𝑇𝑖(𝜃)                     (3) 

 

Where, α is the inner loop learning rate and LTi 

is the task-specific loss, typically the negative 

expected rewards. The meta-objective across tasks is 

then defined via Eq. (4), 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = min
𝜃

∑ 𝐿𝑇𝑖(𝜃𝑖′)𝑇𝑖∼𝑝(𝑇)           (4) 

 

Which updates the model initialization to be 

optimal across a distribution of patient clusters. To 

ensure privacy during training, Federated Proximal 

Policy Optimization (FedPPO) is put into process. 

Each patient device ‘d’ optimizes its local policy 

πθd(a|s) using the clipped surrogate loss via Eq. (5) 

and (6), 

 

𝐿𝑃𝑃𝑂(𝜃𝑑) =

 𝐸𝑡 [𝑚𝑖𝑛(𝑟𝑡(𝜃𝑑)Â𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃𝑑), 1 − 𝜖, 1 + 𝜖)Â𝑡)]     

(5) 

 

𝑟𝑡(𝜃𝑑) =
𝜋𝜃𝑑(𝑎𝑡|𝑠𝑡)

𝜋(𝜃𝑜𝑙𝑑,𝑑(𝑎𝑡|𝑠𝑡))
                    (6) 

 

Which is the probability ratio, Ât is the advantage 

estimate, and ϵ is a hyperparameter controlling the 

clip ranges. The global model θglobal is updated via 

federated averaging, which is done via Eq. (7), 

 

𝜃𝑔𝑙𝑜𝑏𝑎𝑙 =  ∑ (
𝑛𝑑

𝑛𝑡𝑜𝑡𝑎𝑙
)  𝜃𝑑𝐷

𝑑=1              (7) 

Where, ‘nd’ is the number of local samples, 

which ntotal is represented via Eq. (8), 

 

𝑛𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑛𝑑𝑑                            (8) 

 

Iteratively. Next, in accordance with Fig. 2, while 

considering inter-cluster cooperation, the MADDPG 

algorithm is activated where each agent keeps a 

centralized critic Qi(x, a1, …, aN) while 

decentralizing its actor policy πi(ai|oi) sets. 

The critic learned by minimizing the loss 

indicated via Eq. (9), 

 

𝐿𝑖(𝜙𝑖) =   
𝐸(𝑥, 𝑎, 𝑟, 𝑥′)[(𝑄𝑖(𝑥, 𝑎1, … , 𝑎𝑁) −  𝑦𝑖)2]   (9) 

 

Where the target yi is represented via Eqs. (10) 

and (11), 

 

𝑦𝑖 =  𝑟𝑖 +  𝛾𝑄𝑖′(𝑥′, 𝑎1′, … , 𝑎𝑁′)        (10) 

 

𝑎𝑗′ =  𝜋𝑗′(𝑜𝑗′)𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 𝑗         (11) 

 

Finally, the expected cumulative reward J(π) for 

the entire federated multi-agent system is formalized 

via Eq. (12), 

 

𝐽(𝜋) =  𝐸𝜏 ∼ 𝜋 [∫ 𝑅(𝜏(𝑡))𝑑𝑡
𝑇

0
]            (12) 

 

Where τ indicates the trajectory induced by the 

policy π over the continuous state-action space, and 

R(τ(t)) the instantaneous reward function capturing 

treatment success and patient stability sets. The 

model architecture is devised to cater for 

decentralized, dynamic, and privacy-sensitive IoT 

healthcare environments. The meta-learning scheme 

provides fast adaptation to contrasting policies; 

Graph Neural Networks encode structured 

representations of patients; federated learning is 

concerned with confidentiality of data; multi-agent 

cooperation assists with coordination of intervention; 

and contrastive learning provides strong state 

representations. The fusion of all these domains 

results in an exhaustive component system for 

improving chronic disease under real-world 

conditions when applied to IoT environments. 

4. Comparative result analysis 

Experimental validation of the proposed setup 

was carried out in a simulated environment for IoT-

based chronic disease management, designed to 

reproduce the actual health dynamics of patients 
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Figure 2. Overall Flow of the Proposed Analysis Process 

 

 

under continuous monitoring. For realistic condition 

simulations, a synthetic dataset was made by 

integrating actual statistical distributions taken from 

public healthcare datasets like the MIMIC-III and UK 

Biobank, concentrating on chronic diseases such as 

diabetes, hypertension, and chronic obstructive 

pulmonary disease (COPD). Each synthesized patient 

was assigned a unique set of physiological signals, 

including heart rate (HR), blood oxygen saturation 

(SpO₂), blood pressure (BP), glucose levels, 

respiratory rate (RR), and level of physical activity, 

sampled at a frequency of one sample per minute. For 

simulation, 5,000 patient trajectories were created, 

with each trajectory running for 90 days, thus 

contributing to over 600,000 patient-days of IoT 

health data. 

The input feature range was normalized within 

the following intervals: HR (60–120 bpm), SpO₂ (85–

100%), BP (90/60–180/120 mmHg), glucose (70–

200 mg/dL), and RR (12–24 breaths per minute). To 

simulate real-world variations, contextual health 

incidents such as exacerbations, hospital 

readmissions, and interruptions in medication 

adherence were randomly injected based on Poisson 

distribution parameters (λ=0.02\lambda = 

0.02λ=0.02 events/day). 

Treatment actions for these interventions were 

discretized adjustments in dosage, lifestyle 

intervention, and clinical consultations modelled as 

discrete and continuous action spaces. The 

reinforcement learning episodes were defined as 24-

hour periods, with the objective of maximizing 

cumulative rewards computed based on stabilization 

of physiological parameters and minimization of 

risks for exacerbations. 

The system was deployed in a federated 

simulation setup consisting of 100 edge nodes, each 

representing a patient IoT device with local 

computation capability. For federated learning, local 

Proximal Policy Optimization (PPO) models are 

trained with a batch size of 2,048 transitions, and 

model updates are sent back every 20 local epochs. 

The federated aggregation step was designed with the 

assumption of heterogeneous data distribution across 

patients, enforcing non-IID (non-independent and 

identically distributed) settings to test generalization 

ability. The meta-reinforcement learning model using 

MAML was trained for 50 clusters of patients 

dynamically evolving from different patient 

conditions with 5 gradient updates for each new 

cluster adaptation using an inner loop learning rate of 

0.01. Dynamic GraphSAGE models had 2 graph 

convolution layers, sampling neighbourhoods of 10 

and 25 nodes for the first and second layer, 

respectively. 

The SimCLR contrastive encoder was trained for 

1,000 epochs on a batch size of 512 with a cosine 

annealing learning rate schedule starting from 0.001. 

Each multi-agent cluster agent for cooperation via 

MADDPG had independent actor and critic networks 

with learning rates of 0.001 and 0.0005, respectively, 
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having soft update parameters (τ=0.005). Discount 

factors (γ) were set at 0.99 for all RL components, 

emphasizing the significance of long-term treatment 

stability. Evaluation metrics for the system included 

policy convergence time, cumulative reward, patient 

treatment success rates, reduction of exacerbation 

events, and relative communication overhead to the 

centralized RL baselines. All experiments were run 

on a high-performance computing cluster using 32 

NVIDIA A100 GPUs and 1 TB RAM, and 

simulations were repeated for five independent runs 

to compute mean and variance for statistical 

robustness. A curated subset of the MIMIC-III 

Clinical Database was used for experimental 

validation. The database is a publicly available 

dataset containing de-identified health information 

on over 40,000 critical care patients. 

Extracted specifically were time series data 

pertaining to chronic disease management, including 

vital signs such as heart rate, blood pressure, 

respiratory rate, blood oxygen saturation (SpO₂), 

glucose levels, and administered medications. Adult 

patients only (ages 18–90) with continuous 

monitoring data for a minimum of 30 days were 

included to simulate IoT-based real-time tracking. 

Missing data were forward-filled for minor gaps (less 

than 2 hours), and interpolation techniques were 

adopted for longer gaps. The data extracted were 

normalized per feature with z-score normalization to 

ensure uniform scaling down to physiological signals. 

Furthermore, timestamp annotations for simulated 

IoT events were added to patient records to replicate 

real-world sampling through wearable devices at a 

rate of one reading per minute, thus augmenting the 

created dataset in terms of testing dynamic 

representations of health states, treatment pathway 

optimization, and setting up federations without 

compromising the structural integrity of the original 

clinical data samples. 

The simulation environment consisted of datasets 

created from real profiles of patients filling signal 

distributions realistically adjusted to the empirical 

ranges per public health records. The dataset 

represented varying health parameters like heart rate 

from 60 to 120 bpm, SpO₂ from 85 to 100%, systolic 

pressure of 90 to 180 mmHg and diastolic blood 

pressure of 60 to 120 mmHg, glucose level of 70–200 

mg/dL, and respiratory rate of 12–24 breaths per 

minute. The exacerbation events were represented by 

a Poisson event generator with a mean rate of approx. 

0.02 events/day. Supporting the above limitations in 

Section 2, it could be pointed out that it takes the 

traditional centralized-based RL models up to 1575 

episodes to get converged, whereas to federated 

meta-learning framework it only requires 785, 

particularly illustrating the inefficiencies of past 

approaches and showing empirical proofs of some 

improvements in process. The dataset of this study 

was infused into the public domain, and sampled 

from sources that included MIMIC-III Clinical 

Database 

(https://physionet.org/content/mimiciii/1.4/) and UK 

Biobank (https://www.ukbiobank.ac.uk/), which is 

loaded with anonymized clinical records detailing 

long-term medical problems across thousands of 

patients. We followed the distribution of statistical 

profiling presented in these real-world databases to 

simulate our patients enough for the purpose of 

reproducible experimentation. Addressed in detail in 

the supplementary materials also are the 

preprocessing scripts and simulation protocols 

needed to realize replicability of results. 

A mandatory ablation study seeks to quantify the 

individual contributions made to the system's 

performance by each core module of MAML, 

Dynamic GraphSAGE, FedPPO, MADDPG, and 

SimCLR. Removal of MAML led to an increase in 

the time of convergence by 42% (from 785 to 1120 

episodes), indicating its role in policy adaptability at 

a fast pace for the process. Removal of Dynamic 

GraphSAGE saw an antler lessened explained 

variance ratio in state embeddings by 9 in the process. 

The FedPPO experience produced a 92% spike in 

overheads for communication, reaffirming its place 

in the art of privacy-preserving training. MADDPG 

being offboarded was observed to cause an 11% 

decline in the success rate, indicative of intercluster 

coordination failure. Scoping out the SimCLR 

ablated a 7.5% drop in cumulative reward, pushing 

for promoting the utility of contrastive learning in 

state encoding. These results reflect the necessity of 

each module and present an argument about the 

integrated architecture and its synergies. 

Representative edge hardware such as Raspberry Pi 4 

(8GB RAM) and NVIDIA Jetson Nano was tested to 

list computational performance metrics. Jetson Nano 

had an inference latency of around 220 ms per 

episode and memory usage at a max of 1.2 GB, while 

Raspberry Pi, with an inference latency of around 430 

ms per episode, reached a memory usage file of 0.9 

GB in the process. Power consumption levels 

averaged at 3.8W on Raspberry Pi and 5.6W on 

Jetson, respectively for the process. Although 

training makes use of a machine with a server, 

inference tasks are perfectly vicarious: layering the 

proposed system-adoption of pretty much every 

popular edge device and its deployment in a 

decentralized healthcare setup in process. These 

results conclude that the models trained and are 
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deployed for real-time decision-making at the edge 

sets. 

Hyperparameter optimization is therefore 

iteratively carried out to ensure solid and efficient 

convergence through the different stages of training. 

Local PPO agents learned with 3×10−4, so did 

MADDPG actor networks at 1×10−3. Both provided 

the best compromise between policy stability and 

training delays with respect to reinforcement learning. 

The clipping parameter ϵ\epsilonϵ for PPO was 0.2 to 

stop excessive policy updates, while advantage 

estimates were normalized for stabilization of 

learning. For the MAML meta-training, there was an 

outer-loop learning rate of 5×10−4 and an inner-loop 

learning rate of 1×10−2 selected after cross-

validation across patient clusters. In the Dynamic 

GraphSAGE module, neighbourhood aggregation 

used a sampling size of 10 in the first layer and 25 in 

the second to balance embedding richness against 

computational costs. The temperature parameter τ for 

the SimCLR contrastive loss was optimized to 0.5 for 

maximum state separation. Federated aggregation 

round interval of 20 epochs with a participation 

fraction of 20% i.e. random selection of 20 devices 

per round suffices for a stable federated convergence 

in the backdrop of non-IID data distributions. Early 

stopping with a patience parameter of 15 

communication rounds will also be put in place once 

validation reward has plateaued, thus consistently 

gaining in performance across all experimental runs 

for the process. 

For complete appraisal of the proposed model, 

extensive experiments were carried out on the 

performance indicators most relevant to chronic 

disease management. The performance of the system 

was then compared against three representative 

baseline models termed Method [5], Method [8], and 

Method [25]. These models represent the traditional 

centralized PPO, simple clustering with RL 

adaptation, and a graph-based RL method without 

federated or meta-learning enhancements, 

respectively. All results are averaged over five 

independent experimental runs to ensure robustness, 

and standard deviations are reported where 

applicable in process. 

Through the explained variance ratio, the health 

state encoding quality was measured. After SimCLR 

and Dynamic GraphSAGE encoding, the proposed 

method achieved significant improvement in state 

space structuring, thus feeding more informative 

policy learning inputs relative to baselines. 

The proposed model exhibited significantly low 

policy convergence time, being about 45-50% faster 

compared to the convergence of centralized baselines. 

Initial stages of policy optimization were accelerated 

through MAML-based meta-initialization, thus 

resulting in faster deployment of the optimized 

treatment pathways. 

As for an indication of improvement in long-term 

patient outcomes, the higher average cumulative 

reward being attained by this method can be said to 

reflect such improvement. Structured state encoding 

along with cooperative multi-agent optimization 

makes policy performance better on average across 

clusters. 

Compared to the proposed system, the treatment 

success was significantly high, as seen in the 

proposed system, with a percentage of episodes 

where physiological metrics remained within clinical 

stability thresholds marking higher improvement in 

personalizing care and more precise targeting of 

intervention strategy sets. 

 

 
Table 2. Patient Health State Embedding Quality 

(Explained Variance Ratio %) 

Method Clus

ter 1 

Cluste

r 2 

Cluste

r 3 

Cluste

r 4 

Averag

e 

Method 

[5] 

72.3 

± 1.5 

68.7 ± 

1.9 

71.2 ± 

1.4 

70.1 ± 

1.6 

70.6 

Method 

[8] 

74.8 

± 1.3 

70.2 ± 

1.7 

72.5 ± 

1.2 

71.3 ± 

1.5 

72.2 

Method 

[25] 

76.4 

± 1.2 

72.1 ± 

1.6 

75.0 ± 

1.0 

73.5 ± 

1.3 

74.3 

Proposed 82.5 

± 1.1 

78.6 ± 

1.4 

80.2 ± 

0.9 

79.8 ± 

1.0 

80.3 

 
Table 3. Policy Convergence Time (Number of Episodes 

to Threshold Performance) 

Method Cluste

r 1 

Cluste

r 2 

Cluste

r 3 

Cluste

r 4 

Averag

e 

Method 

[5] 

1500 1620 1580 1600 1575 

Method 

[8] 

1300 1405 1350 1380 1359 

Method 

[25] 

1180 1220 1200 1210 1202 

Propose

d 

770 800 790 780 785 

 
Table 4. Average Cumulative Reward per Episode 

Method Cluste

r 1 

Cluste

r 2 

Cluste

r 3 

Cluste

r 4 

Averag

e 

Method 

[5] 

180.4 

± 5.2 

172.1 

± 6.0 

175.6 

± 5.7 

174.8 

± 5.9 

175.7 

Method 

[8] 

190.3 

± 4.8 

182.6 

± 5.3 

186.7 

± 4.5 

185.0 

± 5.1 

186.1 

Method 

[25] 

195.1 

± 4.6 

188.3 

± 5.1 

191.4 

± 4.4 

189.7 

± 5.0 

191.1 

Propose

d 

218.7 

± 4.2 

210.4 

± 4.7 

215.0 

± 3.9 

213.6 

± 4.5 

214.4 
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Figure. 3 Model’s Iterative Result Analysis 

 

Table 5. Treatment Success Rate Improvement (%) 

Method Clus

ter 1 

Cluste

r 2 

Cluste

r 3 

Cluste

r 4 

Averag

e 

Method 

[5] 

62.5 58.3 61.0 59.8 60.4 

Method 

[8] 

66.7 61.5 64.2 63.0 63.8 

Method 

[25] 

68.1 63.4 66.0 65.2 65.7 

Proposed 79.3 74.5 76.8 75.9 76.6 

 

Table 6. Chronic Exacerbation Event Reduction (%) 

Method Clus

ter 1 

Cluste

r 2 

Cluste

r 3 

Cluste

r 4 

Averag

e 

Method 

[5] 

14.2 13.5 14.0 13.8 13.9 

Method 

[8] 

16.5 15.8 16.2 16.0 16.1 

Method 

[25] 

17.8 17.0 17.5 17.3 17.4 

Proposed 22.5 21.4 22.0 21.8 21.9 

 

Figure. 4 Model’s Overall Result Analysis 
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Table 7: Communication Overhead Relative to 

Centralized Training (%) 

Method Clus

ter 1 

Cluste

r 2 

Cluste

r 3 

Cluste

r 4 

Averag

e 

Method 

[5] 

100 100 100 100 100 

Method 

[8] 

90 89 91 90 90 

Method 

[25] 

84 83 85 84 84 

Proposed 9 10 9 10 9.5 

 

 

Iteratively, Next, as per Fig. 4, This method 

reduces chronic exacerbation incidents significantly 

as a result of more proactive optimization of 

treatment and early monitoring of hazards through 

real-time IoT analysis and dynamic policy changes. 

On the whole, the model communications 

overhead was maintained to below 10% of the 

bandwidth used in fully centralized RL training. By 

Tables 2 to 7 and Fig. 3, the federated PPO approach 

significantly minimizes the transmission of sensitive 

health information while still possessing a strong 

policy convergence for this process. Next, we discuss 

an Iterative Validation use Case for the Proposed 

Model, which will assist readers to further understand 

the entire process. 

4.1 Validation using an iterative practical use case 

scenario analysis 

A 58-year-old patient diagnosed with Type 2 

Diabetes Mellitus along with Hypertension is 

continuously monitored through an IoT-based 

wearable device. The device streams, in real time, 

physiological data with a sampling frequency of one 

reading every minute over a period of 60 days. The 

features collected in this monitoring include Heart 

Rate (HR), Blood Oxygen Saturation (SpO₂), Blood 

Pressure (BP), Glucose Level, Respiratory Rate (RR), 

and Physical Activity Index (PAI). Left to record as 

initial patient baseline: HR = 92 bpm, SpO₂ = 94%, 

BP = 145/95 mmHg, Glucose = 165 mg/dL, RR = 18 

breaths per minute, and PAI = 45 units. Daily updates 

are fed into the system capturing medication 

adherence, meal patterns, and sleep quality scores. 

First, the real-time data passes through the SimCLR-

based encoder, turning the 6-dimensional 

physiological feature vector into a 128-dimensional 

latent health state representation. An initial run with 

a mini-batch of 512 and a temperature parameter 

τ=0.5 paired similar health states but excluded 

exacerbation events. Over the initial training window, 

the explained variance ratio achieved for the latent 

space exceeds 80%, ensuring compact and 

informative state representations. Then from 

embeddings of the patients, Dynamic GraphSAGE 

constructs dynamically a patient similarity graph. 

Nearest neighbours are sampled for graph 

aggregation by a 10-25 neighbourhood size policy. 

Patients with similar healthy trajectories (e.g., high 

glucose fluctuations, blood pressure variability) are 

dynamically clustered in the process. This patient is 

grouped with a group that is characterized by 

moderate hypertension and poorly controlled 

diabetes for this process. 

The cluster representation functions as an input to 

the meta-initializing reinforcement learning agents. 

The policy then quickly adjusts to the treatment 

optimization task in the specific clusters, again with 

the MAML given an outer learning rate of 5e-4 and 

inner adaptation step size of 1e-2 after five gradient 

updates. Within 800 episodes, the initial policies 

were accomplished, an impressive speed when 

compared to the more than 1500 episodes that 

standard RL typically required for similar 

stabilization. In this phase, for treatment adaptation, 

patients are given adaptive recommendations 

including dosage changes (e.g. increase metformin 

by 10%), diet modification advice (i.e., decrease 

uncomplicated carbohydrates by 15%), and physical 

activity-enhancing objectives (e.g., increase daily 

step number by 2000 steps). These are treated as 

outputs that should be continuously taken as actions 

from the localized PPO-based agents, the advantage 

estimations being normalized for fast convergences. 

The reward signals for the patients will be derived 

from keeping glucose levels within 90-140 mg/dL 

and blood pressure under 130/85 mmHg with heavy 

penalties imposed to excesses. 

Thus, FedPPO, which is a federated PPO 

architecture, safeguards patients' privacy, and every 

20 epochs, the patient device participates in the 

federated rounds. For this reason, only some updates 

on model parameters are transferred, which reduces 

communication hassle by less than 10% compared 

with the centralized training scenarios. The 

contribution of the patient local model to the global 

policy update using federated averaging is based on a 

sample count in the process. Inter-cluster cooperation 

occurs through the MADDPG framework. Agents 

managing adjacent clusters such as those with 

respiratory complications rather exchange policy 

summaries for generalization enhancement, not pure 

health data. Co-training produces long-term policies 

that are more stable with an observed gain of 12% 

improvement in cumulative reward against at least-

stable cluster policies for the process. 

By the 60 days of full simulation, the patients will 

have dropped their fasting glucose levels from 165 
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mg/dL to 128 mg/dL, systolic BP from 145 mmHg to 

132 mmHg, and reduced 22% adverse events such as 

emergency department visits from historical 

trajectories. Treatment success, defined by the 

percentage of days with all physiological indicators 

within target ranges, achieved 78%, higher than the 

RL baselines of 63%-67%. The system also exhibited 

real-time adjustments for timely intervention 

whenever health trends deviate, which is predicted to 

reduce the long-term hospitalization risk by about 

15% based on clinical extrapolation models. This 

fusion of meta-learning, federated reinforcement 

learning, dynamic graph encoding, contrastive health 

state learning, and multi-agent cooperation shows 

very good outcomes. It implies that this approach is 

better than other approaches in chronic disease 

patient management in IoT-connected ecosystems 

with both clinical improvement and system-level 

efficiency sets. 

5. Conclusion & future scopes 

This paper presented a novel deep reinforcement 

learning-based framework that combines Model-

Agnostic Meta-Learning (MAML), Dynamic 

GraphSAGE, and Federated Proximal Policy 

Optimization (FedPPO) for secure and energy-

efficient chronic disease management in IoT-enabled 

healthcare systems. The proposed architecture 

addresses the necessity for personalization, 

adaptability, and privacy in handling real-time, 

heterogeneous, and privacy-sensitive patient data 

across distributed edge environments. Experimental 

evaluations on synthetic datasets modeled after 

MIMIC-III and UK Biobank explained that our 

approach outperforms several baseline models in 

terms of prediction accuracy, adaptability, and 

energy efficiency. 

However, we acknowledge several limitations 

that must be addressed to advance the system toward 

real-world deployment. First, the framework is 

currently evaluated on statistically simulated datasets 

rather than real patient records. While these 

simulations offer useful insights, they cannot 

substitute clinical validation. As a result, we plan to 

collaborate with medical institutions to conduct trials 

using ethically approved, de-identified patient data to 

assess model robustness and clinical relevance in 

safety-critical healthcare environments. 

Second, although the federated learning 

component (FedPPO) enables decentralized training, 

it does not yet incorporate formal privacy-preserving 

mechanisms such as differential privacy (DP), secure 

multiparty computation (SMC), or homomorphic 

encryption. This leaves the system vulnerable to 

inference and reconstruction attacks. As part of our 

future work, we will integrate DP-FedAvg and SMC 

protocols to ensure regulatory compliance with 

standards such as GDPR and HIPAA, while also 

empirically evaluating the trade-offs between privacy, 

accuracy, and communication cost. 

Third, the current implementation assumes stable 

participation of 20% of edge devices per 

communication round, without accounting for 

stragglers, device failures, or connectivity issues. 

This assumption simplifies the complexities of real-

world healthcare IoT environments, where devices 

frequently suffer from dropout due to energy 

constraints, network instability, or patient non-

compliance. In future iterations, we will incorporate 

asynchronous federated optimization, dropout-

resilient aggregation strategies, and dynamic device 

scheduling to enhance fault tolerance and training 

efficiency under non-ideal conditions. 

In summary, while our proposed system 

demonstrates promising capabilities, further clinical 

validation, privacy enhancement, and robustness 

modeling are essential for large-scale, trustworthy 

deployment in real-world smart healthcare 

ecosystems. 

 
Table 8. List of Notations Used in the Proposed Model 

Symbol Description 

x_i(t) IoT-based health signal for patient i at 

time t 

t ∈ ℝ⁺ Continuous time index in real-valued 

domain 

s_i(t) Latent health state representation of 

patient i at time t 

f_θ Health state encoder parameterized by θ 

sim(·, ·) Cosine similarity function used in 

contrastive learning 

τ Temperature parameter in SimCLR 

contrastive loss 

G(V, E) Patient similarity graph with node set V 

and edge set E 

N(v) Neighborhood of node v in the graph 

structure 

W^(l) Trainable weight matrix in layer l of 

GraphSAGE 

σ Non-linear activation function (e.g., 

ReLU) 

θ Shared policy parameters in MAML 

α Inner loop learning rate in MAML 

ℒ_Ti Loss function for task Ti (typically 

negative expected reward) 

π_θ(a|s) Policy function giving probability of 

action a given state s 

Â_t Advantage estimate at timestep t 

ε Clipping hyperparameter in PPO 

θ_global Global model parameters aggregated 

from local updates 
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n_d Number of local samples on device d 

n_total Total number of samples across all 

devices 

Q_i(x, 

a_1, ..., 

a_N) 

Centralized critic function for agent i in 

MADDPG 

π_i(a_i|o_

i) 

Decentralized actor policy for agent i 

based on its observation o_i 

y_i Target Q-value in MADDPG training 

J(π) Expected cumulative reward of the policy 

π 

τ(t) Policy-induced trajectory over time t 

R(τ(t)) Instantaneous reward function 
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