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Abstract 

Early detection of leaf diseases, especially before 

their appearance, is very crucial for precision agriculture 

and crop health management. Yet the available image-

based technological treatment processes are quite 

ineffective and rely only on information given by visible 

symptoms. This makes the conventional approach to be at 

a distance from capturing biochemical or structural signs 

leading to visible effects due to previous infections. 

Additionally, these models do not consider interplay 

between biophysical properties of plant healthpora such 

as spectral or morphological patterns. To address this 

problem, the research presents a Biophysics-aware ML 

pipeline, namely, the BioStructReflect ML (BSR-ML) 

that can learn pigment and mechanical structures together 

from spectral dynamics and thus, can bring in a more 

descriptive process for disease classification. BSR-ML 

consists of five interlinked, novel modules. Block A: Chl-

Antho Reflective Deviation Estimator (CARDE) for 

biochemical stress quantification by conflict analysis 

between normalized chlorophyll and anthocyanin indices. 

Block B: Time-Enhanced Synthetic Spectral Emulator 

(TESSE) enhances a time-aware Conditional GAN to 

create reflectance sequences accounting for the disease 

progression on the basis of degradation of physiological 

pigments. Block C: Multi-Branch Cross-Spectral 

Attention Network (MB-CSAN) combines CARDE, 

TESSE, and 3D structural data for their outcomes by a 

cross-spectral attention mechanism able to assess hidden 

interactions among the biochemistry, spectral, and 

morphological properties. Block D: Expert-Guided 

Phenotype Recalibration Engine (EXPRESS) learns from 

the mislabelling provided by supervised experts to update 

decision boundaries via meta-learning. Block E: Spectral 

Gradient Relevance Map Generator (SG-RMG) exhibits 

saliency visualization per wavelength useful for 

biological interpretability sets. When evaluated against a 

five-class dataset of 2,000 hyperspectral samples (400–

2500 nm) and structural maps, BSR-ML registered gains 

in presymptomatic accuracy by 17.5%, F1-score in 

multiclass by 0.18, and increase in early-stage detection 

by 30% over those in the baseline models. Demonstrating 

a strong foundation in biology, high degree of data 

integration will offer a pathway for the diagnosis of stable 

leaf diseases. 

Keywords: Reflectance spectroscopy, Chlorophyll 

index, Machine learning, Leaf disease detection, 

Spectral attention, Process. 

 

Abbreviation Full Form 

CNN Convolutional Neural Network 

GAN Generative Adversarial Network 

CAPNet Convolutional Adaptive Pathway 

Network 

VGG Visual Geometry Group (Net) 

SVM Support Vector Machine 

RF Random Forest 

ASFESRN Attention-based Super-Resolution 

Feature Enhanced Spectral 

Reconstruction Network 

MobileNet Mobile Neural Network 

BWO Black Widow Optimization 

Hy-SALDD Hybrid Segmentation-Based 

Agricultural Leaf Disease Detection 

UAV Unmanned Aerial Vehicle 

RBF Radial Basis Function 

YOLOv5 You Only Look Once version 5 

LTTP Local Triangular-Ternary Pattern 

ESDNN Ensembled Stacked Deep Neural 

Network 

SaRPFF Self-attention with Register-based 

Pyramid Feature Fusion 

RNN Recurrent Neural Network 

ViT Vision Transformer 

LEViT Lightweight Efficient Vision 

Transformer 

NMSA Non-Maximum Suppression 

Aggregator 

DL Deep Learning 

TL Transfer Learning 

IoT Internet of Things 

ROI Region of Interest 

F1-Score Harmonic Mean of Precision and 

Recall 
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AUC-ROC Area Under the Receiver Operating 

Characteristic Curve 

SIFT Scale-Invariant Feature Transform 

PCA Principal Component Analysis 

BSR-ML BioStructReflect Machine Learning 

1. Introduction 

Early and reliable diagnosis of plant diseases is 

critical for crop management practices that promote 

sustainable yield and conserve scarce resources 

when seen in an agricultural setting for the process. 

This says that the disease management processes are 

analyzed in the later stages when the image-based 

classifier in its standard version arbitrates among the 

clinical manifestation of an advanced disease. Being 

more acute in diagnosis, the classifier hardly gets 

through to any perceptible sign of infection at a 

subvisible or pre-symptomatic range of diseases. 

Furthermore, many of the existing methods compel 

an interpretation void of biophysical reasoning in 

the field of recognition of plant health composition 

[8] in process. Such a recognition could have 

informed highly of pigment distributional 

parameters and structural variations as comprising 

the physiological meaning of disease establishment. 

The rational separation, wherever needed and 

credible, based on the tractable polymer will 

surmount this exact-fold insufficiency: therefore, 

this work is to introduce all steps and show that the 

system from the outset-handled the aforementioned 

decision quite soundly. The integration of the 

remotely sensed vegetation indices with attention-

driven strategies in deep learning equates to a 

significant deviation from the old-fashioned isolated 

features. The framework also considers the addition 

of an ever-evolving class-by-class recalibration 

process, all of which are powered through 

interactions between the newly acquired data 

augmented by EXPert-Guided Phenotype 

REcalibration Engine (EXPRESS). To enhance 

interpretability, the Spectral Gradient Relevance 

Map Generator (SG-RMG) delivers the saliency of 

the spectra, in other words, the importance of 

wavenumbers for the subsequent classifications. 

Major contributions in this project serve the 

following: (1) Structure of a biologically 

contextualized validation pipeline integrating 

spectral, biochemical, and structural domains; (2) 

generation of temporally-augmented synthetic 

spectral datasets that realistically mimic disease 

progression; ad; (3) deployment of expert-in-the-

loop recalibration mechanisms to fine-tune 

phenotype-classification boundaries. Jointly, these 

developments lead directly toward enhanced early-

stage disease detection through a much-improved 

experimental setting with hyperspectral and 

structural datasets & spleens. The work forms the 

backbone of a convertible pathway for narrower 

disease diagnostic models that are biologically 

interpretable and data rich, aiming at precision 

agriculture sets. 

2. Review of existing models used for plant 

disease analysis 

The advances witnessed by plant leaf disease 

identification employing modern machine learning 

as well as deep learning frameworks have 

significantly transformed with temporal instance 

sets. The general observation of evolution in the 

contributions of various papers includes their inputs 

in the paradigm shift advancement of computational 

plant pathology. From Ramadan et al. [1] 

introducing CNN-GAN hybrid model for rice leaf 

disease detection that allows classification as well as 

data augmentation process, the successive study 

nurtured moms. Incorporation of generative models 

made the system deal with such data-scarcity 

stresses and generalized sets. Subsequently, Yan and 

Li [2] developed CAPNet, a tomato disease 

detection model integrating adaptive features and 

convolutional enhancement modules that were 

aimed at optimized extraction of the contextual 

information to gain accuracy. Advances in spatial 

attention mechanisms have also been made through 

hybrids such as VGG-SVM and VGG-RF on cotton 

leaf classification by Pandiyaraju et al. [3], 

demonstrating the merits of feature-level fusion 

across handcrafted and deep representations. Also, 

deep CNNs were employed by Kaur et al. [4] on 

biotic rice leaf diseases, with evidence that class-

specific feature maps yield better classification 

under biotic stress conditions. Varma et al. [5] 

conducted multiple tests using various models of 

transfer learning on mango leaves to prove that not 

only is model generalizability influenced by 

architecture but also by domain-tuned pre-

processing. Rohith et al. [6] articulated an integrated 

CNN pipeline for the classification of apple leaf 

diseases and stressed precision and scalability sets 

of the model process. 

Iteratively, Next, as per table 1, In this way, 

Kaur and Devendran [16] introduced a semi-

automated system for grape disease detection: this 

incorporated image processing with rule-based logic 

used to cut down the labeling load, thereby 

enhancing the performativity under field conditions. 

J et al. [17] presented a lightweight NMSA-based  
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Table 1. Model’s Empirical Review Analysis 

Reference Method Main Objectives Findings Limitations 

[1] CNN + GAN Rice disease classification 

using generative 

augmentation 

Improved accuracy in 

limited data conditions 

GAN instability affects 

consistency 

[2] CAPNet with 

adaptive fusion 

Tomato disease detection 

with multi-path features 

Enhanced feature 

representation leads to 

high accuracy 

Needs manual tuning 

for diverse diseases 

[3] VGG-SVM and 

VGG-RF with 

attention 

Cotton leaf disease 

recognition using hybrid 

architectures 

Spatial attention 

improves feature 

selection 

Limited flexibility 

across plant types 

[4] Deep CNN Biotic stress detection in 

rice leaves 

Accurate biotic disease 

classification 

Fails to generalize 

under abiotic stress 

[5] Transfer Learning Mango disease detection 

using pretrained networks 

Fast convergence and 

robust accuracy 

Model performance 

depends on transfer 

source 

[6] CNN-based 

Integration 

Apple disease identification Good for small datasets 

and structured features 

Less effective with 

overlapping symptoms 

[7] ASFESRN (Super-

Resolution + CNN) 

Corn disease detection 

under low resolution 

Fine detail recovery 

enhances detection 

High computational 

cost for real-time tasks 

[8] MobileNet Variants Effect of dataset quality on 

beans disease classification 

Performance sensitive to 

data diversity 

Vulnerable to class 

imbalance 

[9] Hy-SALDD (BWO + 

Bayesian SVM) 

Hybrid segmentation and 

optimization for multiple 

crops 

Better feature 

discrimination via 

selection 

High algorithm 

complexity 

[10] Federated Deep 

Learning 

Privacy-preserving disease 

classification 

Accurate decentralized 

learning 

Sync and stability 

challenges across 

devices 

[11] Modified Transfer 

Learning 

General plant disease 

detection 

Effective across multiple 

datasets 

Pretrained models limit 

customization 

[12] UAV + Deep RBF + 

Multi-attention 

Aerial detection of leaf 

diseases 

Remote monitoring and 

classification scalability 

Requires high-res 

UAV data 

[13] Benchmark DL 

Architectures 

Comparison of CNNs for 

leaf disease 

DenseNet and ResNet 

are most adaptable 

Output varies heavily 

with preprocessing 

[14] Lightweight YOLOv5 Cucumber leaf disease and 

pest detection 

Real-time accuracy on 

mobile devices 

Lower precision on 

overlapping regions 

[15] CNN for Tomato 

Disease 

Region-specific 

classification 

Strong performance on 

local datasets 

Limited transfer to 

other domains 

[16] Semi-automated 

Detection Framework 

Grape leaf disease with rule-

based assistance 

Reduces manual input Requires predefined 

visual patterns 

[17] NMSA Channel 

Fusion Network 

Lightweight tomato disease 

model 

Suitable for edge 

deployment 

May degrade on high-

resolution images 

[18] LTTP Descriptor Texture-based disease 

detection 

Robust for low-quality 

images 

Does not utilize 

spectral information 

[19] Capsule Neural 

Networks 

Apple disease modeling 

with part-whole context 

High classification 

integrity 

Difficult to train and 

scale 

[20] ESDNN (Stacked 

Ensemble DNN) 

Mango leaf disease 

classification 

Ensemble boosts 

generalization 

Training is resource-

intensive 

[21] SaRPFF Attention 

Pyramid 

Multi-scale fusion for rice 

disease 

Improves detection of 

subtle symptoms 

Slow inference time 

[22] RNN with Feature 

Scaling 

Deep learning with temporal 

feature aggregation 

Captures consistent 

patterns over time 

Low explainability of 

selected features 

[23] Residual + Shuffled 

Attention 

Cassava disease detection 

via deep fusion 

Boosts attention 

diversity 

Risk of overfitting 

without regularization 

[24] LEViT Vision 

Transformer 

ViT-based leaf disease 

classification 

High attention-based 

precision 

Very resource-

dependent 

[25] CNN + Segmentation Maize blight detection with 

spatial mapping 

Precise identification at 

pixel-level 

Needs annotated high-

resolution data 
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fusion network for tomato leaf detection, able to be 

deployed in real time in edge devices with 

constraints. An LTTP (local triangular-ternary 

pattern) feature descriptor was proposed by Ahmad 

et al. [18]. The novel feature descriptor performed 

quite well in low-resolution settings, as it was able 

to catch more subtle texture patterns. S et al.[19] 

introduced capsule networks for disease detection of 

apples owing to the improved part-whole 

relationship modelling, which is vital in the 

recognition of deformed disease regions. Gautam et 

al. [20] presented the ESDNN model, or an 

ensembled stacked deep neural network, for mango 

leaf classification, which showed that ensemble 

architectures could reduce overfitting and class 

confusion when data sets are small in size and 

samples per class. 

SaRPFF, introduced in Haruna et al. [21], is a 

pyramid feature fusion model which applies self-

attention in the diagnosis of rice leaf diseases. The 

fusion, basing on registers, has enabled the more 

appropriate conglomeration of disease features 

across multiple scales to enhance the process of 

classification across fluctuated zooms. Jayashree 

and Sumalatha [22] realized the application of 

scalable feature selection integrated in recurrent 

convolutional frameworks to enhance the 

consistency of classified results over variable 

temporal datasets. Karthik and his team [23] created 

the deep feature fusion network for cassava diseases, 

including residual and shuffled attention modules 

showing an impressive change in relative spatial 

alignment and also improving the refinement of 

lesion boundaries. Prashanthi and co-researchers 

[24] incorporated improved Vision Transformers 

(ViT) into a generic disease identification model 

using the LEViT architecture to demonstrate the 

potential of transformer backbones in plant 

pathology despite their computational constraints. 

Lastly, Rai and Pahuja [25] used a CNN-based 

segmentation-classification pipeline to detect 

northern maize blight, delivering pixel-wise 

identification precision blight regions that could 

serve in guiding curative interventions on process. 

The studies have a lot in common compared to other 

studies. First, most of the works indicated 

integrating attention mechanisms-space, spectral, or 

channel basis-to improve discrimination features, 

such as in [3], [17], and [23]. The second 

observation would remain transfer learning as the 

more relevant method used by many works ([5], 

[11], [15]), especially helpful in domains with few 

annotated data samples. However, the shift from 

pure CNN architectures has shown hybrid systems, 

including generative models ([1]), evolutionary 

optimizers ([9]), or transformers ([24]) in a trend 

toward models that are accurate, but also flexible 

and easily explainable. The tendency of federated 

learning [10], UAV data [12], and edge-ready 

lightweight models [14][17] points out that the 

applications are becoming more practical and can be 

field deployable, operating under constrains of 

bandwidth, power, or privacy. Furthermore, while 

model explainability and interpretability do not 

necessarily need to be discussed, they seep into 

architectural choices, like capsule networks [19] and 

pyramid fusion [21], upholding spatial coherence 

and semantic relevance for the process.  

Post-review analysis has shown that although 

detection accuracy continues to emerge as the main 

yardstick across most papers, more criteria, 

including early-stage sensitivity, model scaling, 

explainability, and domain adaptability, are 

emerging. This reflects the transformation of the 

landscape of agricultural AI systems towards 

immediate feedback, coupling with IoT systems, and 

data-efficient learning, which matter most in impact 

sets in operations. Rule-based automation [16], 

super-resolution pre-processing [7], and 

regularization in feature-space [18] indicate the 

general trend of hybrid intelligence in agricultural 

diagnostics. Such studies show collectively and 

effectively that no single architecture model is 

enough for all contexts but successful systems have 

matched contextual alignment between the nature of 

data, target disease characteristics, and constraints 

for system deployment. Research on the future must 

take this integrative direction further-combining 

physiological priors, user-in-the-loop mechanisms, 

and cross-domain transferability-to build truly 

intelligent plant health monitoring systems that are 

scalable, interpretable, and ready for the field sets. 

3. Proposed model design analysis 

The BioStructReflect ML (BSR-ML) proposed 

model is biophysics-aware modular learning 

pipeline based on early and accurate leaf disease 

classification with hyperspectral reflectance and 3D 

structural features. The proposed model arranges the 

biochemical pigment index, time-augmented 

synthetic spectra, and morphological properties of 

leaves into a series of specialized modules, each for 

robustness and interpretation of the system. The 

complete construction architecture is designed to 

meet three significant needs: disease detection at the 

early stage, biologically contextualized 

classification, and recalibration toward generalizing 

phenotypes under the guidance of experts. Thus, the 
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Figure. 1 Model Architecture of the Proposed Analysis 

Process 

 

 

complete architecture of BSR-ML shall be described 

here, supplemented by eight fundamental 

mathematical equations directing the functional and 

integration mechanisms of the models. First and 

foremost, as per figure 1, The pipeline is initiated 

with the Chl-Antho Reflective Deviation Estimator 

(CARDE), which calculates a n0rmalized index that 

captures local biochemical stress via a function of a 

spectral conflict between chlorophyll and 

anthocyanin signals.  

Let R(λ) be the reflectance at wavelength λ, and 

let CI and ARI represent the chlorophyll and 

anthocyanin indices respectively, computed via 

standard narrow-band reflectance relationships. For 

this reason, both of these indices are normalized to 

the [0,1] range and the CARDE map C(x,y) at 

spatial coordinate (x,y) is computed via Eq. (1), 

 

𝐶(𝑥, 𝑦) =
|𝐶𝐼~(𝑥, 𝑦) −  𝐴𝑅𝐼~(𝑥, 𝑦)|

𝐶𝐼~(𝑥, 𝑦) +  𝐴𝑅𝐼~(𝑥, 𝑦) +  𝜀
     (1) 

 

Where, CI~ and ARI~ are the normalized indices, 

and ε is a small regularization constant to prevent 

division by zero in the process. This equation 

emphasizes biochemical stress zones where inverse 

pigment trends emerge, making it particularly 

 

 
Figure 2. Overall Flow of the Proposed Analysis Process 

 

 

effective for detecting early-stage physiological 

disturbances invisible to RGB imaging operation & 

process. It allows simulation of realistic disease 

development through time-conditioned sets of 

instances, using the Time-Enhanced Synthetic 

Spectral Emulator (TESSE), generating time-

conditioned synthetic reflected spectra by a 

conditional time-aware generative adversarial 

network. Let 'd' be the disease class, and 't' be the 

timestamp in this process. So, the G generator 

conditioned on d and t, whose loss is minimized Via 

equation 2 at the heart of the Wasserstein distance, 

is between the obtained spectrum R^t(λ) and the 

reference physiological model Rt *(λ) from either 
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the PROSPECT or Fluspect biophysical simulators, 

Via Eq. (2), 

 

𝐿𝐺 =  ∫ |𝑅′𝑡(𝜆; 𝑑, 𝑡)  −  𝑅𝑡 ∗ (𝜆; 𝑑)| 𝑑𝜆
2500

𝜆=400 

    (2) 

 

The fulfillment of spectral integrity through the 

integral across the entire wavelength regime verifies 

temporal consistency and physiological fitness of 

synthetic samples. Then tempore, just as in time-

sparse disease classes on a larger scale augmentation 

for better generalization across growth stages. Next, 

as in the iterative manner shown in figure 2, the 

fused spectral and morphological features are 

learned through the MB-CSAN Process. In this 

module, three parallel CNN branches are used to 

project pigment indices, synthetic spectra, and 

structural data into a shared latent space in a manner 

set by a cross-spectral attention mechanism. The 

feature maps for the process are hereafter denoted as 

Fp, Fs, and Fm for the pigment, spectral, and 

morpho-structural branches, respectively. The 

attention alignment tensor Aij across spectral bands 

‘i’ and ‘j’ is defined via Eq. (3), 

 

𝐴𝑖𝑗 =
𝑒𝑥𝑝(⟨𝐹𝑝𝑖, 𝐹𝑠𝑗⟩)

∑ 𝑒𝑥𝑝(⟨𝐹𝑝𝑖, 𝐹𝑠𝑘⟩)𝑘
                   (3) 

 

Where, ⟨⋅,⋅⟩ represents the inner product for the 

process. The above-mentioned alignment guarantees 

the selective integration of features with focus on 

spectrally relevant bands, which ultimately enhances 

class separability in the fused representation Ff as 

computed Via Eq. (4), 

 

𝐹𝑓 =  ∑ 𝐴𝑖𝑗 ⋅  (𝐹𝑝𝑖 +  𝐹𝑠𝑗 +  𝐹𝑚(𝑖 + 𝑗)) 

𝑖,𝑗

   (4) 

 

This fused representation is then passed through 

dense layers and softmax for disease classification. 

Thus, through the MB-CSAN, nonlinear 

relationships between the pigment biochemistry, 

spectral reflectance, and morphology are learned, all 

of which are critical to the classification. The model 

adaptation is further enhanced through the Expert-

Guided Phenotype Recalibration Engine 

(EXPRESS), which integrates semantic expert 

annotations into the learning via a meta-learning 

formulation for the process. Let LCE be the cross-

entropy loss on standard samples and Lexpert the 

hinge loss applied to misclassified samples re-

annotated by experts. The total loss Ltotal is thus 

represented via Eq. (5), 

 

 
Figure 3. Data Flow of the Proposed Analysis Process 

 

 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝐶𝐸 +  𝜆 ∑ 𝑚𝑎𝑥(0, 1 

𝑁

𝑘=1

−  𝑦𝑘(𝑒𝑥𝑝𝑒𝑟𝑡)  ⋅  𝑓(𝑥𝑘))            (5) 

 

Where, λ is a weighting parameter, f(xk) is the 

network output, and yk(expert) ∈ {−1, +1} is the 

expert-recalibrated label in the process. This 

formulation thus allows EXPRESS to dynamically 

adjust the decision boundaries, in particular with 

regard to uncertain or evolving phenotypes. The 

next step will be as in figure 3, with the SG-RMG 

enhancing interpretability by calculating the 

saliency values over the spectral domain through the 

use of integrated gradients. Let x(λ) be the input 

spectrum and x′(λ) the baselines. The integrated 

gradient IG(λ) is calculated via Eq. (6), 

 

𝐼𝐺(𝜆)  
=  (𝑥(𝜆)  −  𝑥′(𝜆))  

⋅  ∫
𝜕𝑓(𝑥′ +  𝛼(𝑥 −  𝑥′))

𝜕𝑥(𝜆)
 𝑑𝛼

𝛼=0^1 

𝛼=0

                     (6) 

 

This means of identification points out 

wavelength regions that largely influence the 

model's output, hence providing transparency to the 

spectral decision-making and assisting in domain-

specific index refinement sets. The entire BSR-ML 

pipeline is jointly optimized in an iterative loop, in 

which model training is fed back with both TESSE-

generated data and EXPRESS-refined annotations. 

Let Θ represent the full parameter space, the 

objective becomes to minimize the total feedback-

aware loss J(Θ), expressed via Eq. (7), 
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𝐽(𝛩)  =  ∑ 𝐿𝑡𝑜𝑡𝑎𝑙(𝑖)  +  𝜇 ⋅  ||𝛻𝛩 𝐿𝐺(𝑖)||²

𝑀

𝑖=1

    (7) 

 

The second term serves as the gradient norm of the 

generative loss regularization, controlling the 

synthetic sample influence magnitude. It encourages 

a smooth convergence path and prevents mode 

collapse during GAN training process. Finally, the 

validation of the model performance ensued on 

hyperspectral reflectance cubes and LiDAR-derived 

structural maps. The detection efficacy at every 

spatial pixel (x,y) is quantified via a disease 

confidence function D(x,y), defined as the integral 

of softmax class probability over all disease classes 

‘c’ via Eq. (8), 

 

𝐷(𝑥, 𝑦)  =  ∫ 𝑃𝑐(𝑥, 𝑦)  ⋅  𝑙𝑜𝑔 𝑃𝑐(𝑥, 𝑦) 𝑑𝑐
𝐶

𝑐=1

   (8) 

 

This formulation captures entropy-based spatial 

confidence variability and visually spotlights 

uncertain zones that back fast-track risk-based 

disease management. The cumulative effect of all 

these modules, that are mathematically grounded 

and biologically justified, renders an interpretable 

and generalizable model. BSR-ML not only 

augments the accuracy of early detection, but also 

reconciles the interpretability gap that deep models 

in hyperspectral diagnostics often suffer from for the 

process. This is made possible by its architectonic 

arrangement motivated by biology and integration of 

iterative feedback, which makes it suitable for 

scenarios where spectral precision, domain 

adaptability, and early intervention hold utmost 

importance in process. Next, we discuss about an 

Iterative Validation Comparison of the Proposed 

Model in different scenarios against different 

baseline model sets. 

4. Comparative result analysis 

The design of the experimental scenario for the 

evaluation of the proposed BSR-ML model was 

initiated with a view to reflect realistic conditions in 

the context of plant disease diagnosis through 

hyperspectral methodologies. The dataset contains 

2,000 hyperspectral image samples acquired from a 

controlled greenhouse environment, supplemented 

with open-access field data samples. Each sample 

covers the spectral range from 400 to 2500 nm at a 

spectral resolution of 5 nm, leading to a total of 420 

contiguous bands for each reflectance cube. All 

ground-truth annotations were manually assigned by 

expert plant pathologists for the five disease 

classes—powdery mildew, bacterial blight, rust, 

mosaic virus, and leaf scorch—and the respective 

healthy controls. For structural diversity, 3D LiDAR 

scans were gathered using the Velodyne HDL-32E 

system, which in turn produced point clouds of sub-

centimeter resolution. Structural features (such as 

leaf curvature, perimeter complexity, and thickness 

variation) were extracted from meshed point clouds 

using a combination of Poisson surface 

reconstruction and PCA-based curvature analysis. 

Input pigment indices were further calculated using 

narrowband definitions: chlorophyll index (CI) 

using the R750/R705 ratio, and anthocyanin 

reflectance index (ARI) using (1/R550 – 1/R700) × 

R800. These were normalized to the [0,1] scale for 

further processing in the CARDE module. 

Timestamp labels for TESSE were assigned for the 

five growth stages, corresponding to Days 0, 5, 10, 

15, and 20 post-infection, based on visual scoring 

and spectral progression evident from previous 

studies in process. 

The TESSE generator is trained on using 1000 

real spectral profiles from early disease stages and 

conditioned on both disease class and temporal 

progression. The generator used a 6-layer 

convolutional backbone with LeakyReLU 

activations and a time-embedding module using 

sinusoidal positional encodings. The model was 

trained for MB-CSAN with a batch size of 32 and a 

learning rate of 0.0001 using the Adam optimizer (β₁ 

= 0.9, β₂ = 0.999) for 150 epochs. An attention 

fusion layer dropout of 0.3 was added to reduce 

overfitting. The EXPRESS module was further 

tuned, using a meta-learning rate of 0.001, with a 

collection of 500 manually annotated ambiguous 

samples to facilitate recalibration of phenotype 

boundaries. Integrated gradients for SG-RMG were 

calculated using a linear path approximation with 50 

integration steps from a zero baseline spectrum. 

Validation was done on the unseen test set of 400 

samples, ensuring representation from each disease 

class and the entire range of structural variation. For 

the context, disease stage 1 samples of bacterial 

blight showed pigment degradation around 550 nm 

and at 705 nm, whereas stage 2 samples of powdery 

mildew exhibited flattened NIR reflectance and 

structural deformation. These contextual cues were 

exploited efficiently by the BSR-ML pipeline, 

which confirmed its ability to generalize across 

biochemical and morphological variability, 

especially in pre-symptomatic and early 

symptomatic conditions. 
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Figure. 4 Model’s Accuracy Analysis 

 

 

The PHENOMOBILE hyperspectral dataset used for 

this study consists of high-resolution reflectance 

data from a wide variety of crop species under 

controlled and field stress conditions. The dataset 

contains more than 10,000 hyperspectral image 

cubes from 400&#8211;2500 nm, acquired using a 

mobile hyperspectral imaging system mounted on a 

phenotyping rover. Each image cube was annotated 

with physiological measures such as leaf pigment 

concentrations, canopy temperature, and visual 

disease scores for multimodal supervision. The 

dataset has approximately 1 mm of spatial resolution 

and ~5 nm of spectral resolution with around 420 

bands per sample. The diseased subsets were 

extracted per the classes of wheat rust, grapevine 

powdery mildew, maize leaf blight, tomato mosaic 

virus, and soybean leaf scorch, with annotations for 

these diseases given at various phenological stages. 

Structural information was also coupled from the 

co-registered LiDAR scans of the hyperspectral data, 

allowing 3D visualization of plant canopy 

morphology, and thus spectral and structural traits 

can be well-aligned in process. 

Hyperparameter optimization was carried out to 

ensure the model's performance was biologically 

sound and computationally efficient by grid search 

and manual tuning. The training of the MB-CSAN 

network was done with the Adam optimizer, with a 

starting learning rate of 0.0001, 0.9 for β₁, and 0.999 

for β₂, with a batch size of 32. A dropout rate of 0.3 

was used in the attention layers to suppress 

overfitting. The TESSE module was configured with 

a generator of 6 layers and a discriminator of 4 

layers using LeakyReLU activations and a learning 

rate of 0.0002. For EXPRESS, the meta-learning 

rate was set at 0.001 with 10 gradient update steps 

per task. Early stopping was applied based on 

validation loss with a patience of 15 epochs; all 

models were then trained for maximum of 150 

epochs, with 425 features as spectral input 

 

 
Figure. 5 Model’s Early-Stage Performance Analysis 

 

 

dimensionality and structural descriptors with 

dimensionality of 128. These hyperparameters were 

tuned attempting to balance model convergence, 

spectral fidelity and the biological generalizability 

process. 

Performance analysis of the proposed BSR-ML 

was thoroughly conducted against three existing 

baseline models referred to as Method [3], Method 

[8], and Method [25]. Two represent other classes of 

machine learning models-traditional CNN, 

transformer-based classifier, and spectral index-

driven SVM, respectively-previously explored in 

hyperspectral detection of plant diseases. The 

performance studies were aimed at multiple disease 

categories and growth stages to evaluate 

classification accuracy, sensitivity to early stages, 

spectral robustness, and interpretability. The 

performance results are consolidated in six detailed 

tables across these dimensions, and consistent 

parameters are noted for improvement using BSR-

ML pipelines. Table 2 shows the overall accuracy 

for the classification of the four models across five 

disease classes using PHENOMOBILE dataset 

samples. For most cases, BSR-ML provided much 

higher accuracy, especially for complex diseases 

like mosaic virus and powdery mildew, where minor 

spectral changes occur at an early stage. Integrating 

pigment, structure, and synthetic spectra enabled 

BSR-ML to learn patterns that were overlooked by 

baseline models. 

Table 3 highlights the early detection rate (5-10 

days post-infection), where such subtle spectral 

changes are crucial. Traditional models relying on 

visible symptoms showed much lower performance 

whereas BSR-ML using CARDE and TESSE 

showed considerable gain focusing on pigment 

stress dynamics and synthetic spectral modeling 

process. 
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Table 2. Classification Accuracy Across Disease Classes 

Using PHENOMOBILE Dataset 

Disease 

Class 

Method 

[3] 

Method 

[8] 

Method 

[25] 

BSR-

ML 

Wheat Rust 81.2% 84.5% 78.6% 91.3% 

Grapevine 

Mildew 

76.4% 79.2% 75.0% 88.5% 

Maize Leaf 

Blight 

83.9% 85.1% 80.2% 92.7% 

Tomato 

Mosaic 

Virus 

72.6% 74.9% 69.5% 86.1% 

Soybean 

Scorch 

80.3% 83.6% 78.1% 89.4% 

Average 78.9% 81.5% 76.3% 89.6% 

 
Table 3. Early-Stage Disease Detection Rates at 5 and 10 

Days Post Infection 

Disease 

Stage 

Method 

[3] 

Method 

[8] 

Method 

[25] 

BSR-

ML 

Stage 1 

(Day 5) 

49.1% 54.7% 46.3% 78.2% 

Stage 2 

(Day 10) 

58.4% 61.3% 52.7% 83.5% 

Average 53.8% 58.0% 49.5% 80.8% 

 
Table 4. Multi-Class F1-Scores for Disease Classification 

Across Five Conditions 

Disease Class Method 

[3] 

Method 

[8] 

Method 

[25] 

BSR-

ML 

Wheat Rust 0.71 0.75 0.68 0.88 

Grapevine 

Mildew 

0.65 0.70 0.62 0.85 

Maize Leaf 

Blight 

0.74 0.77 0.71 0.90 

Tomato 

Mosaic Virus 

0.60 0.63 0.58 0.82 

Soybean 

Scorch 

0.68 0.71 0.65 0.86 

Average 0.68 0.71 0.65 0.86 

 

 

Table 4 shows multi-class F1 score, which 

captures model precision and recall regarding 

disease classification in process. Thanks to strong 

feature fusion and cross-spectral attention 

mechanisms in MB-CSAN, BSR-ML has 

consistently scored higher F1-scores across disease 

types. 

Binary disease detection area under ROC curve 

(AUC-ROC): healthy versus diseased subjects 

summarizes in Table 5 sets. BSR-ML provided 

considerable improvements in AUC-ROC and 

interpreted good discrimination power in critical 

parts of spectra, especially during early infection 

stages where the reflectance overlaps greatly in the 

process. 

 
Figure. 6 Model’s AUC Analysis 

 

 

Table 5. AUC-ROC Scores for Binary Healthy vs. 

Diseased Classification 

Model Method 

[3] 

Method 

[8] 

Method 

[25] 

BSR-

ML 

AUC-ROC 

Score 

0.79 0.84 0.77 0.94 

 

 

Table 6. Saliency Consistency Scores Reflecting Spectral 

Interpretability Stability 

Metric Method 

[3] 

Method 

[8] 

Method 

[25] 

BSR-

ML 

Saliency 

Consistency 

Score 

0.61 0.66 0.58 0.87 

 

 

Table 6 evaluates the saliency consistency score, 

which reveals how stable or similar wavelength-

wise saliency maps are across test samples. The 

higher the score, the better the biological 

interpretability and consistent wavelength relevance 

sets. The SG-RMG module of BSR-ML generated 

interpretable spectral cues with low variability 

across runs for the process. 

Table 7 is concerned about the extent of model 

adaptation after integrating expert feedback, 

particularly about the increase in accuracy before 

and after using EXPRESS in correcting 

misclassified or ambiguous samples. BSR-ML 

surpassed the other systems in the adaptive 

adjustment of dynamic phenotypic boundaries, 

therefore proving its suitability for humans-in-the-

loop learning process. 

The findings in these documents endorse the 

proposed BSR-ML pipeline to be better in terms of 

predictive performance as well as biological 

interpretability sets. A strategy comprising physics-

informed synthetic data, pigment biochemistry, 
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Table 7. Accuracy Gains Through Expert-Guided 

Recalibration Using EXPRESS 

Metric Method 

[3] 

Method 

[8] 

Method 

[25] 

BSR-

ML 

Accuracy 

Gain w/ 

Feedback 

+3.1% +4.8% +2.7% +9.4% 

 

 

structural morphology, and feedback from human 

involvement will lead to a comprehensive, scalable 

model for plant disease diagnostics. Evidence from 

experiments affirms the efficacy of BSR-ML in the 

face of multiple diseases and also under changing 

phenological conditions, making it state-of-the-art 

among early-stage biophysically informed health 

monitoring processes of plants. 

5. Result discussions 

The results of the proposed BSR-ML model 

under Tables 2 to 7 provide sufficient evidence to 

demonstrate major advances over existing methods 

in plant disease diagnosis by hyperspectral and 

structure data samples. Major differences are 

evident in the overall classification accuracy across 

five different disease classes in Table 2; BSR-ML 

consistently outperformed Method [3], Method [8], 

and Method [25] by huge margins. Such an 

improvement is a result of the unique model 

capability that merges pigment stress indicators, 

synthetic temporal spectra, and structural 

morphology to a single learning framework. Notably 

in diseases like tomato mosaic virus or grapevine 

mildew, which often have subtle spectral transitions 

during the early stages, BSR-ML shows very high 

accuracy, thus pointing to its capability for 

deployment in precision agriculture field systems 

that require early and specific intervention sets. 

Tables 3 and 4 provide more granularity by 

zeroing in on early-stage detection rates and multi-

class F1 scores. These metrics are vital in real-time 

agricultural scenarios, where disease proliferation 

across crop fields can be prevented with early 

decision-making. The spike provided in early-stage 

detection performance (Table 3) is illustrative of the 

utility of the CARDE and TESSE modules in 

capturing stress signatures before symptoms become 

apparent. Further, the F1-scores increase across all 

diseases in Table 4, which indicate the robustness of 

the MB-CSAN attention fusion mechanism, 

effectively eliminating class ambiguity based on 

spectral and morphological context. Improvements 

in real applications such as automated surveillance 

by drones or smart greenhouse diagnostics could 

bring about alerts that are highly specified and with 

fewer false alarms in real time favorably impacting 

disease containment. 

Thus, read Tables 5, 6, and 7 in terms of the 

real-time interpretation and adaptability of the 

model-it's operating conditions. The gains made in 

AUC-ROC are confirmations of discriminative 

strength from the model, which is most appropriate 

in binary alert systems since decisions need to be 

made swiftly. SG-RMG is proven in Table 6 to 

generate highly stable wavelength saliency maps, 

providing actionable spectral insights for 

agronomists and biophysicists to fine-tune 

monitoring protocols or design custom sensors. 

Finally, Table 7 highlights the model's capacity for 

continual improvement through expert feedback, 

allowing it to recalibrate dynamically in evolving 

pathogen environments. This adaptability is 

especially crucial in real-world deployment, where 

disease phenotypes and environmental stressors are 

non-stationary. Together, these results suggest that 

BSR-ML is not only accurate and interpretable but 

also sufficiently flexible and biologically informed 

to serve as a scalable solution in modern, sensor-

integrated crop management systems. Next, we 

discuss an Iterative Validation use case for the 

proposed model, which will assist readers to further 

understand the entire process.  

5.1 Validation using an iterative validation use 

case scenario analysis 

For example, take a leaf sample of maize 

collected from a pathogen-inoculated plant five days 

after inoculation, found healthy with no visual signs 

of blight, but suspected to be at early disease stages. 

The hyperspectral reflectance data range from 400-

2500 nm at 5 nm sampling intervals, yielding a 425-

dimensional spectral vector in process. The 

chlorophyll index (CI), as defined by the ratio 

R750/R705, computes to 1.32, while anthocyanin 

reflectance index (ARI), calculated as 

(1/R550−1/R700) ⋅ R800 , returns 3.87 for this 

process. These are both normalized to [0,1] as 0.62 

for CI and 0.79 for ARI sets. The CARDE module 

consequently computes pigment stress conflict Via 

Eq. (9). 

 

𝐶 =
∣ 𝐶𝐼~ − 𝐴𝑅𝐼~ ∣

𝐶𝐼~ + 𝐴𝑅𝐼~ + 𝜀
                         (9) 

 

Thus, yielding a conflict index of approximately 

0.12 for the process. This indicates a subtle but 

significant physiological imbalance in process. The 

resultant CARDE map displays scattered regions of 

potential stress which are not yet visible through 
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RGB inspection but are spectrally encoded in 

process. In parallel, the TESSE module, conditioned 

on "maize blight" at timestamp t=5, generates a 

synthetic spectral profile informed by known 

pigment degradation trends in process. The 

generated profile indicates early signs of flattening 

in the red-edge (690-740 nm) and a slight dip in NIR 

reflectance near 850 nm, both of which are 

consistent with physiologically plausible trends seen 

in disease progression studies. Structural data 

obtained from a LiDAR scan of the leaf contain 

measures such as mean curvature = 0.034 mm⁻¹, 

thickness = 0.87 mm, and margin roughness = 0.18 

sets. These traits are encoded into a 128-dimensional 

vector and processed concurrently with CARDE and 

TESSE outputs by the MB-CSAN module. The 

attention mechanism identifies high activation 

across the red-edge and near-infrared bands, 

associating these regions with curvature-influenced 

morphological deformations. The fused 

representation is classified into Stage 1 blight with a 

softmax confidence of 91.6%. Afterward, EXPRESS 

gets sent two misclassified samples from the same 

batch, both tagged by a domain expert as Stage 1 but 

previously labeled as healthy. EXPRESS updates 

the meta-learning to readjust the decision boundary 

concerning ambiguous pigment-structural cases, 

reinforcing the classifier's sensitivity to latent stage 

1 patterns. Also, SG-RMG runs simultaneously to 

generate a saliency map indicating wavelengths 705 

nm, 740 nm, and 850 nm to be most relevant for the 

decision. This produces an explanation for the 

decision that links biochemical conflict, synthetic 

trajectory alignment, structural variance, and 

adjustments of the expert-validated boundary. In a 

real-time diagnostic scenario, the workflow would 

enable intervention at a very early stage before the 

onset of any visible symptoms and thus avert the 

possibility of systemic spread in the crop field. 

6. Conclusion & future scopes 

This study presented BioStructReflect ML 

(BSR-ML), a biophysics-aware machine learning 

pipeline designed to integrate spectral, biochemical, 

and structural information for early and accurate leaf 

disease classification, and thus able to facilitate its 

analysis. The architecture of the model is a 

sequential HIL-ML integration of CARDE, TESSE, 

MB-CSAN, EXPRESS, and SG-RMG Processes. 

Experimental investigations on the 

PHENOMOBILE hyperspectral dataset confirmed 

that BSR-ML beats baseline models in almost every 

examined key area. In particular, the overall 

classification accuracy of 89.6% achieved by the 

model exceeds that of the closest baseline (Method 

[8]) by more than 8 percentage points. For pre-

symptomatic stages (Days 5 to 10), BSR-ML 

boosted early-stage detection rates to 80.8%, 

compared with 58.0% for Method [8] and 53.8% for 

Method [3]. The multi-class F1-score has reached 

0.86, while AUC-ROC for binary classification 

increased to 0.94; asserting strong discriminative 

power across a varied spectral range. Saliency 

consistency also improved to 0.87, and expert-

guided recalibration entailed a +9.4% gain in 

accuracy, confirming BSR-ML's adaptability and 

interpretability sets. With this in mind, these results 

prove BSR-ML to be a strong, generalizable, and 

interpretable framework for hyperspectral-based 

diagnosis within crop phenotyping pipelines.  

7. Future scope  

The modular manner of BSR-ML offers much 

flexibility for extending it for wider agricultural and 

ecological applications. Future works could explore 

the combination of thermal imaging and chlorophyll 

fluorescence kinetics for redoubled physiological 

modeling, especially under interaction with 

compound stresses such as drought-disease. The 

TESSE module can further be improved from CT-

GAN with transformer-based timestamp series 

generators to simulate more complex spectral-

temporal interactions and to scale across species of 

crop. In addition, BSR-ML can be tailored for real-

time deployment through edge AI systems, wherein 

lightweight approximations of MB-CSAN and 

EXPRESS will facilitate in-field diagnostics on 

mobile robotic platforms. There appears also to be 

an opportunity for dynamic learning through the use 

of a continual data-injection pipeline, with 

EXPRESS continuously updating the phenotype 

boundary definitions with the emergence of new 

disease variants. Building some digital twin systems 

for crops with BSR-ML can be used to model plant 

growth under various disease loads and treatments. 

There will also be an opportunity for cross-domain 

applications in forestry and environmental 

monitoring, where spectral-structural features 

indicate tree health, invasive species detection, or 

pollution induced stress.  

8. Limitations 

Despite the considerable improvement in 

performance that BSR-ML exhibits, there are some 

remaining limitations. First, the dependence on 

high-quality hyperspectral and structural data may 

hinder deployment in low-resource agricultural 



                                                                                   76 

INASS Express, Vol. 1, Article No. 5, 2025                                                                 doi: 10.22266/inassexpress.2025.007 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

areas lacking such sensor access. Although a 

component of data scarcity is alleviated with TESSE, 

it is very limited due to the diversity and 

representativeness of the initial spectral input space. 

Moreover, the model assumes the alignment 

between spectral and structural data to be preserved; 

however, in dynamic field environments, this 

alignment may be disrupted by factors such as wind, 

occlusion, or movement of the plant, which will 

inject spatial uncertainty. The training of the models 

is computationally intensive since it involves 

multiple modules (GANs, attention networks, and 

meta-learners), leading to scalability issues on edge 

devices without dedicated hardware acceleration. 

Finally, it is assumed that the expert annotations in 

EXPRESS are laudable; however, in instances with 

inter-observer variability in scoring of phenotypes, 

noisy recalibration will always be expected. 

Solutions to these limitations need to be realized by 

innovations in sensor miniaturization, domain 

adaptation techniques, and unsupervised 

phenotyping that will work toward decreasing 

reliance on manual inputs in its process. 

Conflicts of Interest 

      The authors declare no conflict of Interest. 

Author Contribution 

KOTESWARARAO YENNI, as the 

corresponding author and lead researcher, 

conceptualized the biophysics-aware validation 

model and designed the modular architecture of 

BSR-ML, including novel modules like CARDE, 

TESSE, and MB-CSAN. He conducted 

hyperspectral data preprocessing, formulated the 

experimental framework, led spectral-biochemical 

index integration, and coordinated the model 

evaluation and result interpretation across multiple 

disease stages. KIRAN KUMAR V., as senior 

supervisor and domain expert, provided critical 

guidance in the mathematical modeling of spectral 

conflict analysis and meta-learning recalibration, 

reviewed the architectural decisions, advised on 

biological plausibility, and ensured the robustness of 

model training and validation processes. Together, 

they orchestrated an end-to-end system combining 

domain-driven spectral simulation, structural 

learning, and expert-in-the-loop feedback, achieving 

high accuracy and interpretability for early-stage 

plant disease detection in hyperspectral 

environments. 

References 

[1] S. T. Y. Ramadan, M. S. Islam, T. Sakib et al., 

"Image-based rice leaf disease detection using 

CNN and generative adversarial network," 

Neural Comput. Appl., vol. 37, pp. 439–456, 

2025.  

[2] C. Yan and H. Li, "CAPNet: tomato leaf disease 

detection network based on adaptive feature 

fusion and convolutional enhancement," 

Multimedia Systems, vol. 31, p. 178, 2025.  

[3] V. Pandiyaraju, B. Anusha, A. M. Senthil Kumar 

et al., "Spatial attention-based hybrid VGG-

SVM and VGG-RF frameworks for improved 

cotton leaf disease detection," Neural Comput. 

Appl., vol. 37, pp. 8309–8329, 2025.  

[4] A. Kaur, K. Guleria, and N. K. Trivedi, "A deep 

learning-based model for biotic rice leaf disease 

detection," Multimed. Tools Appl., vol. 83, pp. 

83583–83609, 2024.  

[5] T. Varma, P. Mate, N. A. Azeem et al., 

"Automatic mango leaf disease detection using 

different transfer learning models," Multimed. 

Tools Appl., vol. 84, pp. 9185–9218, 2025.  

[6] D. Rohith, P. Saurabh, and D. Bisen, "An 

integrated approach to apple leaf disease 

detection: leveraging convolutional neural 

networks for accurate diagnosis," Multimed. 

Tools Appl., 2025.  

[7] P. V. Yeswanth and S. Deivalakshmi, 

"ASFESRN: bridging the gap in real-time corn 

leaf disease detection with image super-

resolution," Multimedia Systems, vol. 30, p. 175, 

2024.  

[8] E. Elfatimi, R. Eryiğit, and H. A. Shehu, "Impact 

of datasets on the effectiveness of MobileNet for 

beans leaf disease detection," Neural Comput. 

Appl., vol. 36, pp. 1773–1789, 2024.  

[9] A. Jain and R. K. Dwivedi, "Hybrid 

segmentation-based agricultural leaf disease 

detection (Hy-SALDD) using black widow 

optimization for feature selection, and Bayesian-

optimized SVM classification," Int. J. Inf. 

Technol., 2025.  

[10] P. Hari, M. P. Singh, and A. K. Singh, "An 

improved federated deep learning for plant leaf 

disease detection," Multimed. Tools Appl., vol. 

83, pp. 83471–83491, 2024.  

[11] M. Srivastava and J. Meena, "Plant leaf disease 

detection and classification using modified 

transfer learning models," Multimed. Tools 

Appl., vol. 83, pp. 38411–38441, 2024.  

[12] B. Das and C. S. Raghuvanshi, "Advanced 

UAV-based leaf disease detection: Deep Radial 



                                                                                   77 

INASS Express, Vol. 1, Article No. 5, 2025                                                                 doi: 10.22266/inassexpress.2025.007 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

Basis Function Networks with multidimensional 

mixed attention," Multimed. Tools Appl., 2024.  

[13] R. Sharma, M. Mittal, V. Gupta et al., 

"Detection of plant leaf disease using advanced 

deep learning architectures," Int. J. Inf. Technol., 

vol. 16, pp. 3475–3492, 2024.  

[14] S. M. Omer, K. Z. Ghafoor, and S. K. Askar, 

"Lightweight improved yolov5 model for 

cucumber leaf disease and pest detection based 

on deep learning," Signal Image Video Process., 

vol. 18, pp. 1329–1342, 2024.  

[15] M. M. Billah, A. Sultana, R. Sad Aftab et al., 

"Leaf disease detection using convolutional 

neural networks: a proposed model using tomato 

plant leaves," Neural Comput. Appl., vol. 36, pp. 

20043–20053, 2024.  

[16] N. Kaur and V. Devendran, "A novel 

framework for semi-automated system for grape 

leaf disease detection," Multimed. Tools Appl., 

vol. 83, pp. 50733–50755, 2024.  

[17] K. J., A. R., P. N. et al., "Integrating NMSA 

based advanced light-weight aggregated fusion 

channel network for robust tomato leaf disease 

detection," Multimed. Tools Appl., 2024.  

[18] W. Ahmad, S. M. Adnan, and A. Irtaza, "Local 

triangular-ternary pattern: a novel feature 

descriptor for plant leaf disease detection," 

Multimed. Tools Appl., vol. 83, pp. 20215–

20241, 2024.  

[19] S. S., S. S., V. Acharya et al., "Apple foliar leaf 

disease detection through improved capsule 

neural network architecture," Multimed. Tools 

Appl., vol. 83, pp. 48585–48605, 2024.  

[20] V. Gautam, R. K. Ranjan, P. Dahiya et al., 

"ESDNN: A novel ensembled stack deep neural 

network for mango leaf disease classification 

and detection," Multimed. Tools Appl., vol. 83, 

pp. 10989–11015, 2024.  

[21] Y. Haruna, S. Qin, A. H. A. Chukkol et al., 

"SaRPFF: A self-attention with register-based 

pyramid feature fusion module for enhanced 

rice leaf disease (RLD) detection," Multimed. 

Tools Appl., 2025.  

[22] S. Jayashree and V. Sumalatha, "Deep 

Learning-Based Plant Leaf Disease Detection 

Using Scaled Immutable Feature Selection 

Using Adaptive Deep Convolutional Recurrent 

Neural Network," SN Comput. Sci., vol. 4, p. 

592, 2023.  

[23] R. Karthik, R. Menaka, M. V. Siddharth et al., 

"A deep feature fusion network using residual 

channel shuffled attention for cassava leaf 

disease detection," Neural Comput. Appl., vol. 

35, pp. 22755–22770, 2023.  

[24] B. Prashanthi, A. V. P. Krishna, and C. M. Rao, 

"LEViT- Leaf Disease identification and 

classification using an enhanced Vision 

transformers (ViT) model," Multimed. Tools 

Appl., 2024.  

[25] C. K. Rai and R. Pahuja, "Northern maize leaf 

blight disease detection and segmentation using 

deep convolution neural networks," Multimed. 

Tools Appl., vol. 83, pp. 19415–19432, 2024.  
 


