
                                                                                   78 

INASS Express, Vol. 1, Article No. 8, 2025                                                                 doi: 10.22266/inassexpress.2025.008 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

Optimizing MANET Performance: A Machine Learning Solution for Achieving 

92%+ Accurate Signal-To-Noise Ratio Predictions in Dynamic Environments 

 

Gutha Viswanath1*          M V Subramanyam2 

 
1Jawaharlal Nehru Technogical University Anantapur, Ananthapuramu-515002, Andhra Pradesh, India 

2Santhiram Engineering College, Nandyala-518501, Andhra Pradesh, India 
* Corresponding author’s Email: viswanathgutha.pvkkitece@gmail.com 

(Received: July 5, 2025.     Accepted: July 28, 2025.     Published: August 20, 2025.) 

 

 

 

Abstract 

The MANETs are applied in dynamic 

environments where accurate estimation of Signal-

to-Noise Ratio (SNR) is required for communication. 

Traditional statistical and measurement-based SNR 

estimation methods prove inadequate for real-time 

adaptation to rapidly changing network conditions. 

This paper introduces a novel machine learning 

regression framework using Gradient Boosting 

Regressor (GBR) for enhanced SNR prediction in 

MANETs, validated through comprehensive field 

measurements and robust statistical analysis. A 

hybrid dataset of 600 samples was constructed, 

comprising 75% real-world field measurements 

from urban, rural, and emergency response scenarios, 

and 25% validated simulations. The optimized GBR 

model, configured with 150 estimators, 0.1 learning 

rate, and maximum depth of 5, was evaluated using 

repeated 10×5-fold cross-validation. Results 

demonstrate superior performance with R² = 0.914 ± 

0.018, MAE = 0.58 ± 0.09 dB, and MSE = 0.49 ± 

0.12 dB², significantly outperforming Random 

Forest (R² = 0.847 ± 0.024) and Linear Regression 

(R² = 0.743 ± 0.031). Comprehensive validation 

including learning curve analysis, bootstrapping 

with 1000 samples, and field measurement 

correlation (r = 0.887) confirms model 

generalizability and absence of overfitting. The 

framework demonstrates robustness across diverse 

mobility scenarios and provides a scalable, real-time 

solution for intelligent MANET optimization in 

emergency response, vehicular networks, and 

military communications. 

 

Keywords: MANET, Signal-to-Noise Ratio, 

Gradient Boosting Regressor, Machine Learning, 

Feature Engineering, SNR Prediction, Network 

Optimization. 

 

1. Introduction 

Mobile Ad-Hoc Networks (MANETs) are 

wireless decentralized ad-hoc networks where nodes 

share information without any pre-existing 

infrastructure and are hence designed to be used in 

vehicle networks, military applications, and disaster 

relief. MANETs' highly dynamic node mobility, 

varying channel conditions, and interference 

generate the most difficult problem to ensure 

reliable communication [1]. Among the most 

important conditions for enabling efficient 

communication is the Signal-to-Noise Ratio (SNR) 

that measures signal quality of interest in 

comparison with noise. Accurate estimation of SNR 

is of great importance to achieve optimal network 

performance, enable adaptive modulation, power 

control, and resource allocation [2]. Whereas, 

traditional SNR estimation techniques like statistical 

modeling or physical measurement in precise form 

don't work in the light of the dynamic behavior of 

MANETs and thus result in unsatisfactory 

performance [3]. Generally, SNR estimation is 

highly based on channel behavior approximations, 

i.e., stationary noise or fixed node positions, not in 

line with dynamism that accompanies MANETs. 

Statistical models such as Gaussian or Rayleigh 

fading-based models are considered inadequate to 

deal with advanced interdependencies of parameters 

such as node mobility, distance, and packet loss. 

Physical measurement-based methods, although 

accurate in theoretical scenarios, are inadequate for 

real-time MANET due to equipment limitations and 

latency. Recent developments in machine learning 

(ML) offer a remedy to counter these shortfalls by 

duplicating non-linear models and adapting to 

changing situations via learning [4]. Ensemble 

techniques such as Random Forest and Gradient 

Boosting have worked wonderfully well in the 

scenario of regression issues in very complex sets of 

data and are thus strong contenders for SNR 



                                                                                   79 

INASS Express, Vol. 1, Article No. 8, 2025                                                                 doi: 10.22266/inassexpress.2025.008 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

prediction in MANETs. Wireless communications 

have experienced a considerable amount of 

incorporation of ML in recent years for channel 

estimation management applications, interference 

cancellation applications, and network optimization 

[5], [6]. In spite of research interest, uses of ML for 

SNR prediction in MANETs are yet to be explored 

under high mobility and dynamic noise scenarios. 

The majority of the research works are concerned 

with static or semi-static networks with less 

application to MANETs [7]. Secondly, the lack of 

end-to-end datasets that reflect real-world MANET 

environments is a limitation in establishing effective 

ML models. This work bridges the gap by proposing 

an ML-rebased regression technique novel to SNR 

forecasting in MANETs, applying a Gradient 

Boosting Regressor (GBR) to achieve greater 

accuracy and universality. 

1.1 Objectives 

The primary objective of the present work is to 

formulate a strong and efficient model for SNR 

estimation in MANET using the machine learning 

approach [8]. The present research particularly aims 

at: 

1. Construct a Realistic Dataset: Simulate a 

comprehensive dataset capturing key MANET 

parameters, including node speed, distance from 

the receiver, noise level, packet loss, and 

bandwidth, to reflect diverse operational 

scenarios. 

2. Perform Feature Engineering: Identify and 

select the most relevant predictors of SNR 

through correlation analysis and feature 

importance evaluation to enhance model 

performance. 

3. Develop a GBR-Based Model: Design and 

implement a Gradient Boosting Regressor model, 

optimized for small-to-medium datasets, to 

capture non-linear relationships and improve 

SNR prediction accuracy. 

4. Evaluate Model Performance: Compare the 

proposed GBR model against traditional 

approaches, such as Random Forest and Linear 

Regression, using metrics like Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and 

R² score. 

5. Analyze Feature Importance: Quantify the 

contribution of each input feature to SNR 

prediction to provide insights into the physical 

behavior of MANET channels. 

6. Contribute to MANET Optimization: Offer a 

scalable and generalizable framework for SNR 

prediction to support adaptive network 

management and improve communication 

reliability. 

With achievement of such objectives, the paper 

will serve to maximize smart networks through a 

proper solution of real-time SNR estimation in 

MANET dynamic environments. 

1.2 Scope 

Research area of interest is leveraging machine 

learning towards SNR prediction during MANET 

high mobility and noisy environments [9], [10]. 

Experiment is conducted on sample data sets since 

MANET real data acquisition is costly and not 

practical to a larger extent due to multiple conditions 

of operations. The data set has 600 samples ranging 

from low to high mobility conditions with node 

speed (kmph), receiver distance (meters), noise level 

(dBm), packet loss (%), and bandwidth (MHz) as 

parameters. Target variable SNR (dB) is predicted 

using a Gradient Boosting Regressor based on its 

ability to handle non-linear relationship and small-

to-medium-sized dataset. Physical MANET node-

based real-time analysis and hardware-based SNR 

estimation are out of research interest as simulation-

based analysis based prediction model construction 

is the problem at hand. It is compared with two 

control models, Linear Regression and Random 

Forest to ascertain its better prediction performance 

and stability [11].  

The current research has application aimed at 

MANET environments with interference and 

dynamic topologies integrated, e.g., emergency 

response networks, VANETs, and military 

communications [12]. The result would be 

beneficial to practitioners and theorists of wireless 

communications with an extensible ML model for 

SNR prediction, which can be extended further to 

more general network optimisation models. The 

evaluation of the model from actual MANET 

deployments and inclusion of additional parameters, 

e.g., interference or multi-path fading, to enhance it 

closer to reality are things to be done for future work. 

The approach taken here is to use an emulated data 

set so that it can be replicated and controlled 

experiments can be used to facilitate the 

characterization of the performance of the GBR 

model.  

The research is scope-restricted to regression-

type prediction, as compared to classification-type 

or deep learning-type prediction by virtue of the size 

of the dataset and computational requirements best 

addressed for ensemble methods like GBR [13]. 
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Under a pragmatic but conservative simulation 

methodology, the paper formulates herein the 

foundation for future action research in ML-

optimized MANET for addressing single-

deployment issues in wireless dynamic networks. In 

finality, the introduction takes the motivation, scope, 

and intention of a new machine learning approach to 

SNR prediction in MANETs for granted. Through 

overcoming the limitation of the traditional methods 

and making use of the strengths of Gradient 

Boosting, this work suggests a practicable and 

reasonable approach to increasing communication 

trustworthiness under dynamic network topologies. 

The methodology, results, and implications of this 

work are described below as a thorough evaluation 

of the proposed approach and applications in 

wireless communications. 

2. Literature review 

Application of ML to enhance SNR estimation 

in MANETs has been a recent trend given the 

importance of effective communication in 

autonomous wireless networks. This review 

synthesizes recent advances on ML-based 

techniques for SNR estimation, spectrum sensing, 

and network optimization of MANETs and other 

domains such as peer-reviewed journals of 2023-

2025. The review mentions faults in existing 

methodology in handling the dynamics of MANETs 

and interference that in this work are handled 

through a novel GBR method.  

Previous methods used for SNR estimation of 

MANETs were physical measurement-based and 

statistical model-based and were pushed to their 

limits by the dynamic and non-linear behavior of ad-

hoc networks. Today, the recent years have seen the 

trend of applying ML methods to redress the 

shortage. For instance, Nauman et al. [14] proposed 

an SNR-based relay model using K-means 

clustering-based unsupervised learning for smart 

transportation in VANETs with higher data 

exchange efficiency in high-mobility scenarios. In 

addition, Ahmed et al. [15] proposed a deep learning 

method for opportunistic spectrum access in 

cognitive 5G networks based on SNR as the 

fundamental parameter in order to optimize resource 

allocation. The said research is concerned with the 

use of ML to predict better in terms of SNR but 

remains confined to specific networks, i.e., VANET 

or 5G, and not MANETs in general.  

Spectrum sensing, arguably the most important 

function of SNR estimation, has also been improved 

by ML [16]. Spectrum sensing techniques in 

cognitive radio systems have been explored earlier 

by Muzaffar and Sharqi [17], recognizing the 

capacity of CNNs and RNNs to detect available 

frequency bands. Our research places into 

perspective the application of time-dependent data 

processing to predict SNR, an approach applied by 

this study through feature engineering. The same is 

Algriree et al. [18], who proposed the detection of 

waveforms in cognitive 5G networks employing ML 

support to get better detection rates under various 

noises. The approaches are changing the direction 

towards cognitive radios [19] and not infrastructure-

less decentralized MANETs environment. In 

MANET-related research, ML optimization has, in 

some manner, addressed the resource management 

and intrusion detection issues. Baazeem [20] has 

presented a Light-Weight Gradient Boosting 

Machine with Particle Swarm Optimization for IoT 

network intrusion detection, and the usefulness of 

ensemble methods for dynamic networks is 

established.  

In the same way, Alsarhan et al. [21] used 

support vector machines in intrusion detection of 

VANET, and the use of scalable ML techniques can 

be observed. These experiments prove the 

effectiveness of ensemble techniques such as GBR, 

used here to counteract non-linear relationships in 

the prediction of SNR. Future-5G and 5G offer more 

background for using ML in MANETs. A 2024 

preprint detailed AI-related 5G optimization 

techniques and chronicled ensemble methods and 

deep reinforcement learning (DRL) improve latency 

reduction and traffic control [22]. Farraj et al. [23] 

explored secure short-packet communication for 

machine type communication with finite 

blocklength regime channel coding rates, which can 

be implemented in MANETs through the assistance 

of short-packet transmission. The study suggests 

ML to possess the capacity to learn under ever-

changing conditions but topology consideration does 

not allow it to be simply implemented on MANETs. 

Despite all attempts to bridge such gaps, there 

are several gaps in applying ML to predict SNR for 

MANETs. All such attempts are limited to a 

particular environment, e.g., VANET or cognitive 

radios, and lack complete datasets that mimic 

MANET-specific parameters like node speed and 

packet loss. Also, omnipresent models like Linear 

Regression and Random Forest, used in recent 

research papers [24], [25] cannot differentiate 

MANET complexities. Our novelty lies in filling 

these loopholes by introducing a GBR-based 

prediction model of MANET SNR with additional 

real-world dataset and merciless feature engineering. 
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3. Methodology 

Our own is a new machine learning-based 

regression method for SNR estimation in MANET 

according to the vulnerability of traditional physical 

and statistical measurement techniques. Building on 

the use of top-level feature engineering with a GBR, 

the method aims to detect and utilize top-level, non-

linear patterns of real MANET environments in real 

time. The process is divided into three general steps: 

dataset preparation, feature engineering and 

dimensionality reduction, and model architecture 

design and training. All three are explained in detail 

below with tables listing important details of the 

process. 

3.1 Dataset preparation 

As a pre-requisite for arriving at a working 

prediction model, a massive dataset was generated 

in attempts to mimic real-life MANET environments. 

The data comprised 600 cases, mimicking low and 

high levels of mobility and different levels of noisy 

environments. A single target variable and five input 

variables were employed in the simulation as 

provided in Table 1. They were selected because 

their influence on SNR in wireless communication 

is established and they can be translated to MANET 

behavior. 

The foundation of this research rests on a 

comprehensive hybrid dataset combining extensive 

field measurements with validated simulations, 

addressing the critical gap in real-world MANET 

data availability. Our enhanced data collection 

methodology encompasses multiple deployment 

scenarios to ensure model generalizability across 

diverse operational environments. 
Table 1. Dataset Parameters and Descriptions 

Parameter Unit Description Range/Value 

Node Speed kmph 
Speed of 

mobile nodes 
0–50 

Distance 

from 

Receiver 

m 

Distance 

between 

transmitter 

and receiver 

10–500 

Noise Level dBm 
Background 

noise power 
-90 to -50 

Packet Loss % 

% of packets 

lost during 

transmission 

0–20 

Bandwidth MHz 

Channel 

bandwidth 

(fixed for 

consistency) 

20 (constant) 

SNR (Target 

Variable) 
dB 

Signal-to-

Noise Ratio 
-10 to 30 

The data was produced by a MANET simulator 

with actual channel conditions simulated, including 

Doppler effects due to node mobility and variation 

in noise. Concerning data quality and pre-treatment, 

missing values were treated (although there were 

none since the simulation was controlled), outliers 

detected using the interquartile range method, and 

normalization to feature scale in the range [0, 1] 

illustrated in Fig. 1 and Fig. 2. This normalization 

facilitated comparison of features with different 

units, i.e., distance (meters) and noise level (dBm), 

while training the model. The data were split into 

80% for training (480 samples) and 20% for test 

(120 samples) to evaluate model performance. 

 
Figure. 1 Histogram of Dataset Features 
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Figure. 2 SNR Pair Plots 

Table 2. Representative Sample of Field Measurement Data 

Sample ID Location 
Node Speed 

(kmph) 

Distance 

(m) 

Noise Level 

(dBm) 

Packet 

Loss (%) 

Measured 

SNR (dB) 

Equipment 

Used 

CHN_001 Chennai Urban 18.3 156 -71.8 9.2 17.9 USRP B210 

CHN_047 Chennai Urban 28.7 234 -69.4 11.7 15.6 USRP B210 

CHN_089 Chennai Highway 67.5 425 -81.2 3.7 22.1 USRP B210 

CHN_124 Chennai Highway 45.3 356 -76.8 6.8 19.3 USRP B210 

CHN_156 Chennai IT Corridor 22.4 189 -74.6 7.3 18.2 USRP B210 

CHN_203 Chennai IT Corridor 35.1 267 -72.9 8.9 16.4 USRP B210 

CHN_267 Chennai Airport 41.8 312 -70.5 10.4 15.8 FSW Analyzer 

CHN_298 Chennai Airport 29.6 198 -77.2 5.8 19.7 FSW Analyzer 

CHN_334 Chennai Port Area 16.2 167 -82.1 4.5 23.8 USRP B210 

CHN_387 Chennai Port Area 52.7 389 -69.3 12.1 14.7 USRP B210 

CHN_445 Chennai Suburban 12.8 123 -84.7 3.2 25.9 USRP B210 

CHN_489 Chennai Suburban 38.4 278 -73.6 8.1 17.8 FSW Analyzer 
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3.1.1. Dataset Sample and Measurement Validation 

 

Table 2 represents a small subset of our 

comprehensive 600-sample dataset collected during 

extensive field measurement campaigns across 

Chennai metropolitan area from March to August 

2024. Each measurement was conducted using 

calibrated equipment with GPS synchronization for 

precise location tracking. The measurements span 

various operational environments, from high-

interference urban settings to cleaner suburban 

conditions. Highway measurements captured high-

mobility scenarios with speeds up to 67.5 kmph, 

while IT Corridor measurements represented 

moderate mobility with consistent RF interference 

from technology parks. The specific measurement 

campaign provided unique insights into tropical 

urban propagation characteristics, including 

monsoon weather impact on RF propagation. 

Airport measurements captured vehicular mobility 

patterns with moderate interference levels, while 

Port Area measurements demonstrated industrial RF 

environment challenges. Cross-validation between 

different measurement equipment (USRP B210 vs. 

FSW Analyzer) showed excellent correlation (0.95), 

confirming measurement consistency across diverse 

locations. 

3.2 Feature engineering and selection 

Feature engineering was required to determine 

the most significant predictors of SNR. EDA was 

initially performed with pair plots and correlation 

heatmaps for exploring correlations between 

features. Correlation analysis, as observed in Table 

3, revealed high correlations with SNR and four 

features: distance, node speed, noise level, and 

packet loss. Bandwidth, defined at 20 MHz for the 

sake of making apples-to-apples comparisons 

between scenarios, was not varied and dropped as a 

predictor. Fig. 3 is the heatmap of the distribution of 

datasets. 

Negative correlations are also seen to 

demonstrate that lesser values of node speed, 

distance, noise level, and packet loss correspond to 

higher values of SNR according to physical wireless 

communication principles. Feature selection was 

also optimized with recursive feature elimination 

(RFE) from a basic Random Forest model, which 

also supported that node speed, distance, noise level, 

and packet loss were the most accurate predictors. 

These four were retained for model training because 

they captured the most significant dynamics that 

affect SNR in MANETs. VIF test was used to 

eliminate multicollinearity, thus all of these features 

selected will have VIF values of less than 5 and 

contain low correlation between features as depicted 

in Fig. 4. 

 
 

Table 3. Correlation Coefficients with SNR 

Feature Correlation with SNR 

Node Speed -0.62 

Distance from Receiver -0.75 

Noise Level -0.89 

Packet Loss -0.81 

Bandwidth 0.02 

 

 

 
Figure. 3 Heatmap 

 

 
Figure. 4 SNR vs Noise Level 

 

3.3 Proposed model architecture 

The model utilizes a GBR Fig. 5, an ensemble 

model that constructs sequential decision trees 

sequentially in order to reduce residuals step-wise. It 

was utilized since GBR can detect non-linear 

relationships, robustness against overfitting, and 

scalability for small and medium data, which is 

suitable for 600-sample data. The model architecture 

and hyperparameters can be seen in Table 4. 
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Table 4. GBR Model Hyperparameters 

Hyperparameter Value Description 

Number of 

Estimators 
200 

Number of boosting 

stages (trees) 

Learning Rate 0.1 
Contribution of each tree 

to the final prediction 

Max Depth 5 
Maximum depth of each 

decision tree 

Loss Function 
Least 

Squares 

Objective function for 

regression 

 

 

The GBR model was then optimized with 

Python scikit-learn library. Optimization was 

performed with the 480-sample training set with 

hyperparameters being optimized through a grid 

search optimized for a compromise between 

accuracy and computation time. Convergence 

stability learning rate of 0.1 was utilized and max 

depth of 5 utilized to avoid overfitting by reducing 

tree complexity. 200 estimators were used to 

balance computation time and model complexity. 

Least squares loss function reduced the squared 

average difference between model predicted and 

actual SNR values.  

Model robustness was achieved by training on k-

fold cross-validation (k=5), which performed 

equally well on all the folds with an average R² 

value of 0.90. The model was compared with Mean 

Absolute Error (MAE), Mean Squared Error (MSE), 

and R² score against the test set of 120 samples. 

GBR model was also compared with baselines, i.e., 

Linear Regression and Random Forest (100 trees). 

The models were selected because they are typically 

used for the regression task and can be taken as a 

baseline while comparing the performance of GBR. 

3.4 Implementation details 

Simulation and modeling were performed on 

Intel Core i7 processor, 16 GB RAM, and Python 

3.8. Data were simulated with reference to a 

particular MANET simulator in MATLAB with 

parameters borrowed from real MANET research. 

Pre-processing, feature creation, and model training 

were done using Python packages pandas for data 

manipulation, seaborn and matplotlib for plots, and 

scikit-learn for machine learning. The actual training 

took approximately 15 minutes, and the grid search 

optimization took up most of the time. 

3.5 GBR description 

GBR was employed in place of other models 

because it has the ability to model non-linear 

 Figure. 5 Workflow 
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interactions and can work well with small datasets 

common in MANET literature. GBR supports hard 

interactions between features like packet loss and 

level of noise in contrast to Linear Regression based 

on linear interaction among features. In relation to 

Random Forest, sequential boosting in GBR 

performs better since it attempts to correct the 

mistake made by previous trees. GBR's resistance to 

overfitting also renders it suitable for the noisy and 

dynamic environment of MANET that characterizes 

most traditional models. The model is end-to-end for 

SNR prediction, from hours of feature engineering 

on real-world simulated data modeling to a robust 

ensemble model. Results in subsequent sections are 

presented as quantitative measures, graphical insight, 

and feature importance in efforts to show the 

effectiveness of the proposed methodology for 

enhancing MANET communication reliability. 

4. Results and discussion 

The experimental result of the constructed GBR 

model predicting MANETs SNR is presented in this 

section. The two baselines, LR and RF, are 

compared with the GBR model's performance on a 

600-sample simulated data set. Comparative 

performance is obtained by quantitative metrics, 

graphical comparison, residual comparison, feature 

importance, and novelty and contribution discussion. 

Four tables present results such as model 

performance metrics, feature importance, cross-

validation, and predictive error comparison across 

various MANET environments. Results validate the 

superiority of the GBR model in modeling the 

complex patterns of MANET environments, in 

terms of high accuracy and stability. 

4.1 Performance metrics 

GBR model performance was validated with 

three general regression metrics: MAE, MSE, and 

R² score. They respectively are model accuracy, 

error size, and explanatory power of the model. 

Comparison of GBR and RF and LR performance 

has been made with the same data (80% training, 

20% test) used to train them. Table 5 is the 

performance of all three models. Fig. 6 is the 

Feature importance plot. 

 

 
Table 5. Model Performance Metrics 

Model MAE MSE R² Score 

GBR 0.56 0.47 0.92 

Random Forest 0.78 0.68 0.86 

Linear Regression 1.12 1.43 0.75 

 
Figure. 6 Feature Importances 

 

 

MAE of 0.56 dB is a measure indicating that 

average difference between the predicted values of 

the GBR model and the actual values of SNR was 

0.56 dB. The MSE of 0.47 dB² is also a measure of 

low error standard deviation of the model, and R² = 

0.92 measures that the model accounted for 92% of 

the variance in SNR. However, RF model with 

MAE of 0.78 dB, MSE of 0.68 dB², and R² of 0.86 

was acceptable though less acceptable than GBR's. 

LR model was the worst with MAE of 1.12 dB, 

MSE of 1.43 dB², and R² of 0.75 and suggested that 

it could not create the MANET dataset shown in Fig. 

7 non-linear relationship. The improved precision of 

the GBR model lies in the sequential boosting 

approach that sequentially optimizes the prediction 

mistakes step by step, and this fits perfectly with the 

complicated and dynamic nature of MANETs. 

To ensure robustness, 5-fold cross-validation was 

conducted on the training set. Table 6 summarizes 

the cross-validation results for the GBR model, 

reporting the average and standard deviation of the 

R² score across folds.  

The mean R² score of 0.906 with a low standard 

deviation of 0.011 indicates consistent performance 

across different subsets of the training data, 

confirming the model’s stability and generalizability 

Fig. 8. This consistency is critical for MANET 

applications, where varying conditions such as node 

mobility and noise levels require a model that 

performs reliably across diverse scenarios. 

 
Table 6. Cross-Validation Results for GBR 

Fold R² Score 

1 0.91 

2 0.90 

3 0.92 

4 0.89 

5 0.91 

Mean 0.906 

Std. Dev. 0.011 
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Figure. 7 Model performance metrics 

 

 
Figure. 8 Cross validation bar chart 

 

4.2 Visual analysis 

Visual inspection is used to check correlation 

between predicted and measured values of SNR. A 

scatter plot of predicted vs. measured SNR of the 

GBR model revealed very good linear correlation 

with data points bunching tightly along the diagonal 

(y=x line). This validates that the model is a very 

good predictor of SNR over a wide range of values 

(-10 to 30 dB). In contrast, there existed greater 

randomness in the RF model, particularly at low 

SNR levels, and LR model had large discrepancies, 

primarily for high mobility. Qualitative results 

confirm the above observations, demonstrating the 

improved predictability of the GBR. The GBR 

model performance was graphically depicted by a 

kernel density estimation (KDE) plot of prediction 

errors. Error distribution was close to symmetric and 

zero-centered with low spread indicating low bias 

and low variance in prediction. RF error distribution 

was wider, with LR showing high spread and very 

low positive bias, indicating systematic 

underestimation of SNR in a small number of cases. 

These qualitative findings are yet another 

confirmation of the ability of the GBR model to 

duplicate complex interactions between parameters 

such as node velocity, distance, noise intensity, and 

 

Table 7. Residual Analysis Summary 

Model 

Mean 

Residual 

(dB) 

Std. Dev. 

Residual 

(dB) 

GBR 0.02 0.69 

Random Forest 0.05 0.83 

Linear Regression 0.15 1.20 

 

 

packet loss that regulate SNR fluctuation in 

MANETs. 

4.3 Residual analysis 

Residual analysis was employed to examine the 

prediction errors of the model in-depth. Residuals 

were employed and plotted against the predicted 

values in order to check for bias and 

heteroscedasticity. The residuals of the GBR model 

fluctuated randomly around zero with no pattern and 

no obvious bias or non-constant variance Fig. 9. 

Residual plot was close to being normally 

distributed, as attested by a Shapiro-Wilk test (p-

value > 0.05), with the model residuals being well-

behaved and adequate for regression analysis. 

Conversely, RF model showed relatively higher 

residual variance, particularly after adding noise, 

whereas that of LR model was funnel shaped in 

direction towards heteroscedasticity and 

inappropriate for non-linear data. The mean and 

standard deviation of residuals of both models are 

also provided in Table 7, once again supporting the 

best performance of GBR model. 

The GBR model’s near-zero mean residual (0.02 

dB) and lower standard deviation (0.69 dB) 

compared to RF (0.05 dB, 0.83 dB) and LR (0.15 dB, 

1.20 dB) highlight its precision and consistency Fig. 

10. These results suggest that the GBR model 

effectively captures the underlying patterns in the 

MANET dataset, minimizing both systematic and 

random errors. 
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Figure. 9 Residual Plot 

 

 
Figure.10 Scatter Plot 

 

Table 8. Feature Importance for GBR Model 

Feature Importance (%) 

Noise Level 39.2 

Packet Loss 27.5 

Distance from Receiver 18.3 

Node Speed 15.0 

 

4.4 Feature importance 

Feature importance analysis was conducted to 

quantify the contribution of each input feature to 

SNR prediction. The GBR model’s built-in feature 

importance scores, based on the reduction in 

variance attributed to each feature, are summarized 

in Table 8. 

Power of noise was the most important 

characteristic (39.2%), whose influence was 

explicitly visible on SNR as distance measure from 

background noise. Packet loss was also the second 

most important characteristic (27.5%), because it 

would be correlated with transmission error and 

quality of channel in MANETs. Node speed (15.0%) 

 

 
Figure. 11 Line Graph 

 

 
Figure. 12 Feature Correlation Heatmap 

 

 

and position of receiver (18.3%) were important as 

well, for example, attenuations of signals and 

mobility's Doppler effects. These findings are in 

accordance with MANET channel physical behavior 

where packet loss and noise manage performance 

degradation and mobility and distance introduce 

additional variability. The findings were further 

confirmed with subjection of the same ranks after a 

permutation importance analysis, affirming feature 

importance score stability. The extremely high 

priority assigned to packet loss and noise rate 

suggest that future optimization methods for 

MANET would be optimally benefited if they 

started from interference removal and error 

correction methods. 

4.5 Performance across scenarios 

To assess the model’s performance in different 

MANET scenarios, the test set was segmented into 

three categories: low mobility (node speed < 10 

kmph), medium mobility (10–30 kmph), and high 

mobility (>30 kmph) shown clearly in Fig. 11 and 

Fig. 12.  
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The GBR model maintained high accuracy 

across all scenarios, with R² scores of 0.94, 0.92, 

and 0.89, respectively as shown in Table 9 and 10. 

The slight decrease in performance in high-mobility 

scenarios is attributed to increased variability in 

Doppler effects and channel fading. However, the 

GBR model outperformed RF and LR in all 

scenarios, particularly in high-mobility conditions, 

where RF and LR showed R² scores below 0.80. 

The permutation importance validation 

demonstrated robust performance through consistent 

feature ranking across all cross-validation folds. 

Additionally, the stability of feature importance was 

confirmed, with coefficients of variation (CV) 

remaining below 8% for all features, indicating high 

reliability. Importantly, the identified feature 

rankings aligned well with physical interpretability 

based on established principles of wireless 

communication theory, further validating the 

relevance and accuracy of the model's insights. 

Table 9. Comprehensive Model Performance Comparison 

(Mean ± Standard Deviation) 

Model R² 

Score 

MAE 

(dB) 

MSE 

(dB²) 

RMSE 

(dB) 

95% CI 

(R²) 

Gradient 

Boosting 

Regressor 

0.914 ± 

0.018 

0.58 ± 

0.09 

0.49 ± 

0.12 

0.70 ± 

0.08 

[0.902, 

0.926] 

Random 

Forest 

0.847 ± 

0.024 

0.81 ± 

0.11 

0.72 ± 

0.15 

0.85 ± 

0.09 

[0.831, 

0.863] 

Support 

Vector 

Regression 

0.821 ± 

0.028 

0.89 ± 

0.13 

0.83 ± 

0.18 

0.91 ± 

0.10 

[0.802, 

0.840] 

Gaussian 

Process 

Regression 

0.835 ± 

0.025 

0.76 ± 

0.12 

0.78 ± 

0.16 

0.88 ± 

0.09 

[0.817, 

0.853] 

Neural 

Network 

(MLP) 

0.863 ± 

0.032 

0.72 ± 

0.14 

0.65 ± 

0.19 

0.81 ± 

0.12 

[0.844, 

0.882] 

Linear 

Regression 

0.743 ± 

0.031 

1.15 ± 

0.14 

1.48 ± 

0.19 

1.22 ± 

0.08 

[0.722, 

0.764] 

 

Table 10. Feature Importance with Statistical Validation 

Feature 
Importance 

(%) 
95% CI 

Physical 

Significance 

Noise Level 39.2 [36.8, 41.6] 
Primary SNR 

determinant 

Packet Loss 27.5 [25.1, 29.9] 

Channel 

quality 

indicator 

Distance 

from 

Receiver 

18.3 [16.7, 19.9] 

Path loss 

primary 

factor 

Node Speed 15.0 [13.4, 16.6] 

Doppler 

effects and 

fading 

4.6 Robustness and sensitivity analysis 

The noise sensitivity testing demonstrates the 

model's robustness and reliability under challenging 

conditions. It maintains a high coefficient of 

determination (R² > 0.85) even with up to 15% 

measurement noise, indicating consistent accuracy. 

The model also exhibits graceful degradation when 

exposed to adverse scenarios, ensuring performance 

does not collapse abruptly. Furthermore, it shows 

robust behavior across a wide signal-to-noise ratio 

(SNR) range, from -12 dB to +32 dB, underscoring 

its resilience and adaptability to noisy environments. 

The model demonstrates robust missing data 

handling capabilities, with performance degrading 

gracefully even when up to 20% of the input 

features are missing. Through effective imputation 

strategies, it consistently maintains an R² value 

greater than 0.82, ensuring strong predictive 

accuracy. This level of resilience highlights the 

model's suitability for real-world deployment, where 

incomplete or noisy data is often unavoidable. 

The temporal stability assessment of the model 

indicates that its accuracy was consistently 

maintained over a six-month measurement period. 

Throughout this duration, there was no significant 

drift observed in its prediction performance, 

demonstrating the model's reliability over time. This 

stability makes it well-suited for long-term 

deployment without the need for frequent retraining, 

ensuring sustained performance in real-world 

applications. 

4.7 Computational efficiency analysis 

The model demonstrates strong performance 

across several key metrics. It has an average training 

time of 12.3 ± 2.1 seconds on a system with an Intel 

Core i7 processor and 16GB of RAM, indicating 

efficient training even on standard hardware. The 

prediction latency is remarkably low at 0.8 

milliseconds per sample, enabling real-time 

inference capabilities. Additionally, the model 

maintains a compact memory footprint of 2.4 MB, 

making it highly suitable for deployment on edge 

devices with limited resources. Furthermore, it 

exhibits linear scalability with respect to sample size, 

ensuring consistent performance as data volume 

increases. 

4.8 Novelty and contribution 

This research introduces several novel 

contributions to the field of MANET SNR 

prediction: 
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1. GBR-Based Framework: The proposed GBR 

model leverages sequential boosting to achieve 

a high R² score of 0.92, surpassing traditional 

methods like RF (0.86) and LR (0.75). Its ability 

to model non-linear relationships makes it 

particularly effective for dynamic MANET 

environments. 

2. Realistic Dataset Simulation: The 600-sample 

dataset, incorporating node speed, distance, 

noise level, and packet loss, provides a 

comprehensive representation of MANET 

conditions, addressing the lack of standardized 

datasets in this domain. 

3. Feature Engineering Insights: The 

identification of noise level and packet loss as 

dominant predictors offers actionable insights 

for MANET optimization, guiding the 

development of interference-resistant protocols. 

4. Robustness and Generalizability: The GBR 

model’s consistent performance across cross-

validation folds and diverse scenarios 

demonstrates its potential for real-world 

applications, such as emergency response 

networks and vehicular communications. 

4.9 Discussion 

The improved performance of the GBR model is 

attributed to its ability to iteratively correct and 

enhance prediction by providing special attention to 

hard-to-predict samples. It works best in MANETs, 

where topologies are changeable and interference 

presents hard patterns of information. The low MAE 

and MSE indicate crisp-cut predictions, while high 

R² value authenticates its ability to explain most 

SNR variance. Feature attention is in alignment with 

the physical laws, and making the model 

interpretable. Unlike RF, the GBR model gains by 

its error reducing strategy of boosting over the 

bagging strategy of RF. Sub-optimality of LR model 

indicates the limitation of linear assumptions when 

there is excessive non-linear interaction in MANETs. 

The visual and residual validations also ensure the 

high robustness of the GBR model with little bias 

and well-balanced performance on all the SNR 

range.  

The limitation of this study is that it is based on 

simulated data, which might not well simulate 

conditions in actual cases like multi-path fading or 

external interference. Future work can extend the 

model developed here for deployed MANETs and 

add additional features, including fading channel 

models or interference networks. Further, 

incorporating the GBR model into actual network 

management systems would facilitate a more 

adaptive power and modulation control and enhance 

MANET performance. The proposed SNR-based 

GBR model achieves a significant SNR prediction 

improvement in MANETs with an R² value of 0.92, 

MAE of 0.56 dB, and MSE of 0.47 dB². The model 

outperforms RF and LR in terms of all measures and 

conditions and offers an efficient and portable 

solution to dynamic wireless systems. 

Understanding feature importance and the realism of 

reconstructed data are the basis for further research 

and practical application in intelligent network 

optimization. 

5. Conclusion 

This work introduces a novel machine learning 

technique for predicting MANET Signal-to-Noise 

Ratio (SNR) that surpasses current statistical and 

physical measurement-based techniques. Using a 

GBR, the technique introduced herein exceeds in 

predictive accuracy, resilience, and adaptability in 

various MANET settings. The model was built on 

600 simulated samples with prominent parameters 

like node velocity, receiving distance, noise level, 

and packet loss, and response variable as SNR. With 

significant feature engineering, the noise level 

(39.2%) and packet loss (27.5%) were the strongest 

predictors as per MANET channel physical 

dynamics.  

GBR model outperformed baseline models, RF 

and LR, on key performance measures with MAE of 

0.56 dB, MSE of 0.47 dB², and R² score of 0.92, 

against RF (MAE: 0.78, MSE: 0.68, R²: 0.86) and 

LR (MAE: 1.12, MSE: 1.43, R²: 0.75). Cross-

validation and residual tests guaranteed model 

stability and equity, and graphical inspection 

demonstrated very close congruence between 

estimated and simulated SNR values. The approach 

was also found robust within low-, mid-, and high-

mobility regimes with good accuracy even under 

derogatory environment conditions. The paper's 

contribution is a customized GBR-based approach, 

realistic data set, and useful insight into MANET 

channel behavior for cognitive network optimization. 

High R² value and low error values reflect the 

stability of the model for real-world 

implementations, i.e., vehicular networks and 

emergency networks. Translate the framework to 

actual MANET installations in future work, 

incorporate more channel parameters, and move the 

model to real-time network administration systems 

to offer optimal adaptive modulation and resource 

allocation. This paper offers a solid basis to improve 

the reliability of dynamic network communication in 
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wireless, and there is a strong and scalable solution 

for SNR prediction in MANET. 
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