
                                                                                   92 

INASS Express, Vol. 1, Article No. 9, 2025                                                                 doi: 10.22266/inassexpress.2025.009 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

Impact of Mobility Models on Long Short-Term Memory -Enhanced Routing 

Protocols in Mobile Ad Hoc Networks 

 

Saad Mohsen Hassan1, 2*          Mohd Murtadha Bin Mohamad1          Nawar T. Thannon3 

Farkhana Binti Muchtar1 

 
1Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru 81310, Skudai, Malaysia 

2Computer Science Department, Faculty of Basic Education, AL-Mustansiriya University, Baghdad 10011, Iraq 
3Computer Nwtorks and Internet Department, College of Information Technology, Nineveh University, Mosul, Iraq. 

* Corresponding author’s Email: murtadha@utm.my 

(Received: August 8, 2025.     Accepted: August 28, 2025.     Published: September 7, 2025.) 

 

 

 

Abstract 

Mobile Ad Hoc Networks (MANETs) face 

routing challenges due to dynamic topology and 

lack of infrastructure. This study enhances Location-

Aided Routing (LAR) protocols by integrating Long 

Short-Term Memory (LSTM) models to predict 

node trustworthiness, improving routing decisions. 

LSTM models leverage historical traffic and trust 

data for adaptive routing.  The research evaluates 

mobility model impacts on energy consumption, 

end-to-end delay, and packet delivery ratio. The 

LSTM-enhanced LAR protocol was tested under 

standing and random walk scenarios.  Results show 

15% improvement in packet delivery ratio compared 

to traditional methods, particularly in dynamic 

environments. However, energy consumption and 

end-to-end delay increased. Findings highlight 

machine learning's potential for enhancing MANET 

routing protocols while identifying optimization 

needs. This research emphasizes adaptive, trust-

based routing importance for improving MANET 

performance. 

 

Keywords: MANETs, LAR, LSTM, Mobility Models, 

Trust prediction. 

1. Introduction 

One of the goals of smart environments is to 

improve the quality of human life in terms of 

comfort and efficiency. The Internet of Things (IoT) 

has become crucial for building smart environments, 

but security and privacy issues are significant 

concerns due to various threats [1, 2]. Therefore, 

Intrusion Detection Systems (IDSs) are essential for 

mitigating IoT-related security attacks [3, 4]. 
Comprehensive taxonomies have systematically 

categorized various schemes for detecting and 

mitigating blackhole attacks in MANETs [5]. 

Advanced machine learning and optimization 

techniques have emerged as powerful tools for 

developing intrusion detection systems to counter 

black and gray hole attacks [6]. However, the 

limited computing and storage capabilities of IoT 

devices make conventional IDSs impractical [7]. 

Surveys emphasize the need for robust and efficient 

IDSs tailored for IoT environments [8]. The spread 

of information through digital platforms has 

increased the prevalence of fake news, necessitating 

sophisticated detection mechanisms [9]. Deep 

learning models, such as Bidirectional Long Short-

Term Memory (Bi-LSTM) and attention-based Bi-

LSTM, have shown promise in detecting fake news 

[10-12]. Integrating attention mechanisms enhances 

these models' accuracy and effectiveness. However, 

challenges like data dependency, overfitting, and 

context specificity must be addressed to improve 

model robustness across different contexts [12]. 

Wireless sensor networks (WSNs) are used for 

data monitoring and collection in various 

applications but are vulnerable to security threats 

due to limited resources. Effective IDSs are 

necessary to protect WSNs from attacks like Denial 

of Service (DoS). Studies have developed deep 

learning-based IDSs to detect DoS attacks, 

highlighting the need for advanced security 

mechanisms to enhance WSN resilience [13]. The 

Border Gateway Protocol (BGP) facilitates routing 

information exchange between autonomous systems, 

but anomalies can cause significant disruptions [1, 9, 

14]. LSTM-based autoencoder networks have been 

proposed for detecting BGP anomalies, leveraging 

their ability to model time series data for accurate 

anomaly detection, these models effectively identify 

various types of routing anomalies, highlighting the 

potential of LSTM-based approaches in enhancing 

network security [9]. 
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Mobile ad-hoc networks (MANETs) face 

security and privacy challenges due to their lack of 

infrastructure, unpredictable topology, and restricted 

resources. Novel detection approaches, like the 

dipper-throated optimization (DTO) algorithm, 

classify passive and active black-hole attacks, 

improving attack detection accuracy and network 

performance [15]. Recent advances have 

demonstrated the effectiveness of integrating 

LSTM-based trust prediction mechanisms into 

location-aided routing protocols [16]. Underwater 

Acoustic Sensor Networks (UASNs) are used in 

marine applications but face security challenges due 

to limited node capabilities. Trust management-

based secure routing protocols, such as T-SAPR, use 

attention-based LSTM models to evaluate node trust 

and optimize routing policies, enhancing packet 

delivery and energy efficiency [1]. MANETs require 

routing protocols that adapt to frequent changes in 

dynamic topologies [17, 18]. Simulative studies 

comparing reactive and proactive routing protocols 

across different mobility models provide insights 

into their performance under varying conditions, 

emphasizing the importance of selecting suitable 

models to optimize network performance. Research 

shows that node mobility significantly impacts 

routing protocols' performance, influencing metrics 

like packet delivery ratio, throughput, and delay [17, 

19]. The random waypoint model is used to simulate 

mobility patterns and assess their impact on network 

performance [20]. 

Vehicular ad-hoc networks (VANETs) require 

reliable and secure communication for time-critical 

data exchange. Enhanced routing protocols, such as 

the Enhanced Location-Aided Ant Colony Routing 

(ELAACR), combine location-aided key 

management with ant colony optimization to ensure 

secure and efficient data transmission in VANETs 

[21]. These protocols improve metrics like 

throughput, packet delivery ratio, and end-to-end 

delay [21]. Despite significant advancements in 

security mechanisms and routing protocols for 

various network environments, challenges remain. 

There is a critical need for adaptive, efficient, and 

scalable solutions that respond dynamically to 

changing network conditions and diverse security 

threats [2]. Further investigation is required to 

understand how different mobility models impact 

MANET performance, particularly in terms of 

energy consumption and delay [22]. Emerging 

research has explored federated learning with 

multiobjective optimization to develop trust-aware 

routing frameworks [23]. This gap underscores the 

need for enhancing MANET routing efficiency 

using LSTM models trained on network traffic 

features and trust labels to predict neighboring 

nodes' trustworthiness, improving overall network 

performance and adapting to various mobility 

scenarios. 

2. Methodology 

This section presents the developed 

methodology. It starts with the problem formulation. 

Next, the proposed solution is presented.  

2.1 Problem formulation  

In MANET utilizing a Location-Aided Routing 

(LAR) protocol, we seek to enhance routing 

efficiency by integrating an LSTM model trained on 

network traffic features and corresponding trust 

labels. Each node in the network is equipped with an 

LSTM model, trained based on its historical 

experiences, to predict the trustworthiness of 

neighboring nodes. This predicted trust level is then 

utilized as an additional criterion alongside the 

conventional location and mobility criteria inherent 

in LAR. Consider a MANET represented as a graph 

𝐺 = (𝑉, 𝐸), where 𝑉 denotes the set of nodes and 𝐸 

denotes the set of edges, which represent the links 

between nodes. Each node 𝑣 ∈ 𝑉  possesses an 

LSTM model 𝑀𝑣, trained to predict the trust level of 

its neighbors. The trust prediction at time 𝑡  for a 

neighboring node 𝑗 as predicted by node 𝑖 is denoted 

as 𝑇̂𝑖𝑗(𝑡). The input to the LSTM model comprises 

traffic features at node 𝑖  at time 𝑡 , represented as 

𝐱𝑖(𝑡) , leading to the trust prediction given by 

𝑇̂𝑖𝑗(𝑡) = 𝑀𝑖(𝐱𝑖(𝑡)). The routing decision at node 𝑖 

at time 𝑡  is formulated based on the location, 

mobility, and predicted trust levels of its neighbors. 

This decision is encapsulated in a routing metric 

𝑅𝑖𝑗(𝑡) , defined as a function 𝑓  incorporating the 

location and mobility of node 𝑗 , and the trust 

prediction 𝑇̂𝑖𝑗(𝑡) . Mathematically, this can be 

expressed in Eq. (1): 

 

𝑅𝑖𝑗(𝑡) = 𝑓(location𝑗⁡(𝑡),mobility𝑗⁡(𝑡), 𝑇̂𝑖𝑗(𝑡)) 

(1) 

 

A critical aspect of this study is the influence of 

various mobility models on the performance of the 

proposed LSTM-augmented LAR protocol. Let ℳ 

denote the set of potential mobility models, such as 

random waypoint, and random walk. The mobility 

model 𝑚 ∈ ℳ  governing each node's movement 

plays a significant role in shaping the network 

dynamics. The probability 𝑃( encounter ⁡𝑖𝑗) of node 
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Figure. 1 Diagram illustrating the optimization process for minimizing PLR in MANETs using LSTM-augmented LAR 

protocols influenced by various mobility models 

 

𝑖  encountering node 𝑗  is determined by the 

underlying mobility model and significantly impacts 

the trust prediction accuracy and routing 

performance. The primary objective of this research 

is to minimize the packet loss ratio (PLR) 

attributable to black/gray hole attacks by leveraging 

the enhanced trust prediction capabilities of the 

LSTM models under different mobility scenarios. 

The problem can be formally stated as the 

minimization of PLR subject to the dynamics 

induced by various mobility models and the efficacy 

of the LSTM-based trust predictions and can be 

described in Equation 2: 

 

minPLR⁡ subject to ⁡𝑚 ∈ ℳ⁡ and ⁡𝑇̂𝑖𝑗(𝑡) =

𝑀𝑖(𝐱𝑖(𝑡))  
(1) 

 

Developing an optimization solution to such a 

complex problem is challenging due to the inherent 

variability and unpredictability of node mobility. 

Therefore, we propose to explore the effect of 

different decision models on the performance of the 

LSTM-augmented LAR protocol. By analyzing how 

various mobility models impact trust prediction 

accuracy and routing efficiency, we aim to provide 

insights that will help researchers narrow down the 

problem space. This, in turn, will guide the 

formulation of more specific optimization problems 

that are tailored to particular mobility models, 

thereby simplifying the decision-making process 

and enhancing overall network performance. 

Figure 1 depicts a diagram to illustrate the 

optimization process for enhancing routing 

efficiency in MANET using an LSTM-augmented 

LAR protocol.  

The primary objective is to minimize the Packet 

Loss Ratio (PLR) by leveraging enhanced trust 

predictions. This is achieved through an 

optimization framework where each node is 

equipped with an LSTM model trained on network 

traffic features and corresponding trust labels to 

predict the trustworthiness of neighboring nodes. 

The mobility model, which dictates node movement 

patterns, significantly influences the probability of 

node encounters (P(𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑖𝑗)). This probability 

affects trust prediction accuracy and overall routing 

performance. By accurately predicting trust levels, 

the routing decisions are improved, thereby reducing 

the PLR. The enhanced trust predictions, influenced 

by various mobility models, form the crux of the 

optimization strategy aimed at improving MANET 

performance, particularly under dynamic conditions. 

This integrated approach underscores the 

importance of mobility models in shaping network 

dynamics and routing efficiency. 
The primary objective is to minimize the Packet 

Loss Ratio (PLR) by leveraging enhanced trust 

predictions. This is achieved through an 

optimization framework where each node is 

equipped with an LSTM model trained on network 

traffic features and corresponding trust labels to 

predict the trustworthiness of neighboring nodes. 

The mobility model, which dictates node movement 

patterns, significantly influences the probability of 

node encounters (P(encounter_ij)). This probability 

affects trust prediction accuracy and overall routing 

performance. By accurately predicting trust levels, 

the routing decisions are improved, thereby reducing 

the PLR. The enhanced trust predictions, influenced 

by various mobility models, form the crux of the 

optimization strategy aimed at improving MANET 

performance, particularly under dynamic conditions. 

This integrated approach underscores the 

importance of mobility models in shaping network 

dynamics and routing efficiency. 

2.2 Proposed solution  

The methodology for enhancing routing 

efficiency in MANETs through LSTM-augmented 

LAR protocol is illustrated in Figure 2. The process 

begins by defining the network model, represented 

as a graph 𝐺 = (𝑉, 𝐸), where 𝑉 denotes the set of 

nodes and 𝐸  the set of edges, indicating links 

between nodes. Next, various mobility models (ℳ), 
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such as Random Waypoint, Gauss-Markov, and 

Manhattan Grid, are defined to govern node 

movements. Following this, each node is equipped 

with an LSTM model 𝑀𝑣 , trained on historical 

traffic features and trust labels to predict the 

trustworthiness of neighboring nodes. The 

experiments conducted are designed to assess the 

impact of these mobility models on the performance 

of the LSTM-augmented LAR protocol.  

The first experiment, "Standard Test with 0% 

Malicious Nodes-Standing," serves as a baseline, 

evaluating network performance metrics under 

stationary conditions with no malicious nodes. The 

second experiment, "Node 55 - Random Walk," 

investigates the effect of a single node following a 

random walk mobility model. The third experiment, 

"Standard Test-Standing," replicates the baseline 

under different network conditions or configurations. 

The fourth experiment, "Partition Test-Random 

Walk," evaluates network performance in a 

partitioned scenario with nodes following a random 

walk mobility model. The fifth experiment, "Stress 

Test-Random Walk," stresses the network by 

increasing traffic load while nodes follow a random 

walk. The sixth experiment, "Different Number of 

Black Hole Test," examines the impact of varying 

numbers of black hole nodes on network 

performance.  

Performance metrics, including Packet Delivery 

Ratio (PDR), End-to-End (E2E) Delay, Energy 

Consumption, Overhead, and Throughput, are 

collected from each experiment and analyzed to 

understand how different mobility models affect 

trust prediction accuracy and routing efficiency. The 

results guide researchers to narrow down the 

problem space to a more specific decision model 

based on mobility models. This approach simplifies 

the decision-making process, leading to the 

development of targeted optimization strategies, 

enhancing overall network performance. The 

methodology concludes by integrating these 

strategies into the network model, aiming to 

minimize packet loss and maximize routing 

efficiency. 

 

 

 

Figure. 2 Flowchart illustrates the step-by-step process of defining relation between network and mobility models from 

trust perspective 
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Table 1. Summarizes the experimental design parameters for evaluating the performance of different protocols under 

various mobility models and network conditions in a MANET 

Exper

iment 

Run 

Until 

(time 

step) 

Data Packet 

Life Time 

(time step) 

Mobility 

Model 

Malicious 

Nodes (%) 

Numbe

r of 

Nodes 

Node Speed 

(m/s) 

Packet Generation 

Parameters 

1 550 100 Standing 0 30 0 - 

2 550 100 Random 

Walk 

30 55 1 𝑃𝑜𝑖𝑠𝑠𝑜𝑛⁡𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝜆⁡ =
⁡0.3, 𝑁(𝑡) = 𝑁(𝑡) ∗
(𝑡/30)𝑁(𝑡) = 𝑁(𝑡) ∗
(𝑡/30)  

3 550 100 Random 

Walk 

30 55 1 - 

4 550 100 Standing 30 30 0 - 

5 550 100 Random 

Walk 

25 20 1 𝑃𝑜𝑖𝑠𝑠𝑜𝑛⁡𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝜆⁡ =
⁡0.3,  𝑁(𝑡) = 𝑁(𝑡) ∗
(𝑡/30)𝑁(𝑡) = 𝑁(𝑡) ∗
(𝑡/30)  

6 550 100 Random 

Walk 

30 30 1 - 

7 1000 100 Standing 10, 20, 30, 40, 

50, 60, 70, 80, 

90 

30 0 Poisson distribution, λ 

= 0.3 

8 550 100 Random 

Walk 

33 100 1 Poisson distribution, λ 

= 0.3 

 

 

3. Experimental results and analysis  

The experimental design aims to evaluate the 

performance of various routing protocols in a 

MANET under different mobility models and 

conditions. Table 1 summarizes the key parameters 

for each experiment, including simulation duration, 

data packet lifetime, mobility model, percentage of 

malicious nodes, number of nodes, node speed, and 

packet generation parameters. Experiments were 

conducted in environments with dimensions of 

1000 × 1000 meters, running until 550- or 1000-

time steps. The data packet lifetime was set to 100-

time steps. Mobility models varied between 

Standing and Random Walk, with malicious node 

percentages ranging from 0%  to 90% . We 

deliberately selected Standing and Random Walk 

mobility models as they represent the fundamental 

extremes of the mobility spectrum. The Standing 

model serves as a baseline for static or low-mobility 

scenarios, while Random Walk provides insights 

into highly dynamic, unpredictable movement 

patterns. These two models allow us to establish the 

foundational performance boundaries of our LSTM-

enhanced protocol under minimal and maximal 

mobility conditions, providing essential baseline 

data for understanding the protocol's behavior across 

the mobility spectrum. 

 The number of nodes in the network varied 

from 20 to 100, with node speeds of 0 m/s  for 

Standing models and 1 m/s  for Random Walk 

models. Packet generation followed a Poisson 

distribution with a lambda of 0.3, and in some 

experiments, the number of nodes varied over time 

according to 𝑁(𝑡) = 𝑁(𝑡) ∗ (𝑡/30) . This design 

facilitates a comprehensive analysis of how mobility 

models and malicious activities affect key 

performance metrics such as PDR, E2E delay, 

Energy consumption, Overhead, and Throughput, 

thereby providing insights into the robustness and 

efficiency of the routing protocols under study. 

The combined results Table 2 provides an 

overview of various routing protocols' performance 

across different mobility models and node 

configurations. The focus is on identifying the most 

suitable mobility model for improving performance 

metrics under different packet generation models. 

In stationary scenarios (Standing model), the 

LSTM Trust-Based protocol achieved the highest 

PDR and Throughput. For example, with 0% 

malicious nodes, it recorded a PDR of 0.95 and a 

Throughput of 8.54, but with higher E2E delay 

(3.10) and Energy consumption (6177.18). In 

another test, it achieved a PDR of 0.72 and a 

Throughput of 6.48, with an E2E delay of 1.16 and 

Energy consumption of 144.71. These results 
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Table 2. Performance Evaluation of Various Routing Protocols under Different Testing Conditions 

Experiment Protocol PDR 
E2E 

Delay 
Energy 

Consumption 
Overhead Throughput 

Standard 
Test with 0% 
Malicious 
Nodes 

Random 0.86 2.26 359.01 0.47 7.84 

Distance Based LAR [24] 0.93 1.26 82.74 0.35 8.45 

Rectangle Based LAR [25] 0.87 1.03 843.62 0.41 7.79 

Con Based LAR [26] 0.70 1.12 204.21 0.52 6.26 

LSTM Trust Based 0.95 3.10 6177.18 0.30 8.54 

Node 55 - 
Random 
Walk 

Random 0.86 2.26 359.01 0.47 7.84 

Distance Based LAR [24] 0.93 1.26 82.74 0.35 8.45 

Rectangle Based LAR [25] 0.87 1.03 843.62 0.41 7.79 

Con Based LAR [26] 0.70 1.12 204.21 0.52 6.26 

LSTM Trust Based 0.95 3.10 6177.18 0.30 8.54 

Standard 
Test – 
Standing 

Flood 0.40 0.85 11075.21 0.29 3.59 

Random 0.36 1.43 584.93 0.26 3.17 

Distance Based LAR [24] 0.55 1.05 127.53 0.36 5.01 

Rectangle Based LAR [25] 0.48 0.79 1510.22 0.32 4.41 

Con Based LAR [26] 0.54 1.00 362.26 0.35 4.87 

LSTM Trust Based 0.72 1.16 144.71 0.42 6.48 

Partition 
Test - 
Random 
Walk 

Flood 0.57 0.68 576.02 0.36 3.47 

Random 0.35 0.72 53.88 0.26 2.11 

Distance Based LAR [24] 0.51 0.78 40.95 0.34 3.03 

Rectangle Based LAR [25] 0.42 0.67 59.47 0.29 2.54 

Con Based LAR [26] 0.43 0.75 31.24 0.30 2.53 

LSTM Trust Based 0.59 0.71 44.24 0.37 3.52 

Stress Test - 
Random 
Walk 

Flood 0.29 0.78 5251.64 0.22 11.45 

Random 0.17 1.14 432.16 0.15 7.06 

Distance Based LAR [24] 0.25 0.82 211.04 0.20 9.40 

Rectangle Based LAR [25] 0.28 0.54 879.58 0.22 10.53 

Con Based LAR [26] 0.23 0.65 226.91 0.18 8.12 

LSTM Trust Based 0.35 0.96 229.42 0.26 13.19 

Different 
Number of 
Black Hole 
Test (10%) 

10% 0.87 1.22 152.53 0.41 7.95 

20% 0.86 1.17 152.59 0.36 7.74 

30% 0.72 1.16 145.26 0.36 6.47 

40% 0.78 1.18 169.04 0.45 6.93 

50% 0.79 1.20 170.55 0.45 7.05 

60% 0.40 1.14 118.71 0.35 3.63 

70% 0.58 1.32 188.06 0.53 5.28 

80% 0.35 1.10 113.97 0.35 3.25 

90% 0.19 0.67 152.56 0.52 1.64 

Node 100 
Test 

Distance Based LAR [24]s 0.49 0.87 299.47 0.38 14.41 

Rectangle Based LAR [25] 0.39 0.89 51067.25 0.55 11.63 

Con Based LAR [26]  0.43 0.75 11459.75 0.58 12.64 

LSTM Trust Based 0.67 1.02 308.08 0.34 19.97 

 

indicate that while the LSTM Trust-Based protocol 

excels in reliability and efficiency, optimization is 

needed to balance resource usage. In dynamic 

environments (Random Walk model), the LSTM 

Trust-Based protocol maintained the highest PDR 

and Throughput in most scenarios. For instance, in 

the partition test, it achieved a PDR of 0.59 and a 

Throughput of 3.52, with an E2E delay of 0.71 and 

Energy consumption of 44.24. In the stress test, it 

recorded a PDR of 0.35 and a Throughput of 13.19, 

with an E2E delay of 0.96 and energy consumption 

of 229.42. The protocol's adaptability to changing 

network conditions highlights its effectiveness in 

managing node mobility and trust prediction. 

However, increased energy consumption and delay 

suggest areas for improvement, particularly in 

energy-constrained applications. 

The Standing model showed better performance 

in stable and low-mobility scenarios, suitable for 

static sensor networks or low-mobility urban 

environments. Under this model, the LSTM Trust-

Based protocol achieved the highest PDR (0.95) and 

Throughput (8.54) with 0% malicious nodes, 

indicating its effectiveness in low mobility scenarios. 

The packet generation model did not significantly 

impact performance metrics, suggesting that LSTM 

Trust-Based can maintain high performance in 

steady traffic patterns. Conversely, the Random 
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Walk model is suitable for dynamic and high-

mobility environments, such as VANETs or mobile 

sensor networks. The LSTM Trust-Based protocol 

excelled in maintaining high PDR and Throughput 

even in this model. For example, in the stress test, it 

achieved a PDR of 0.35 and Throughput of 13.19. 

The packet generation model, based on a Poisson 

distribution, showed the protocol's effectiveness in 

handling varying traffic intensities. 

The impact of malicious nodes on network 

performance was evident in different black hole 

tests. As the percentage of malicious nodes 

increased, PDR significantly decreased. For instance, 

the PDR dropped from 0.874 at 10% malicious 

nodes to 0.186 at 90% malicious nodes. Energy 

consumption peaked at 188.061 with 70% malicious 

nodes. Overhead generally increased with higher 

malicious node percentages, affecting network 

efficiency. The LSTM Trust-Based protocol's 

performance, though superior, diminished with 

increasing malicious nodes, emphasizing the need 

for enhanced security mechanisms in adversarial 

environments. In larger network configurations, 

such as the Node 100 test, the LSTM Trust-Based 

protocol demonstrated scalability, achieving the 

highest PDR (0.67) and Throughput (19.97), with 

relatively low Overhead (0.34). This indicates the 

protocol's potential for application in extensive 

MANETs, aligning with the goal of incorporating 

dynamic and mobility-aware scheduling to improve 

network performance. 

A critical limitation observed in our results is the 

significantly higher energy consumption of the 

LSTM Trust-Based protocol, particularly evident in 

the baseline test where it consumed 6177.18 units 

compared to 82.74 units for Distance-Based LAR. 

This represents a 74-fold increase in energy 

consumption, which severely limits the protocol's 

applicability in energy-constrained environments 

such as IoT and wireless sensor networks. While the 

protocol demonstrates superior performance in 

terms of PDR and throughput, this energy overhead 

makes it impractical for many real-world MANET 

deployments where battery life is the primary 

constraint. 

In general, the analysis suggests that the 

Standing model is more suitable for low mobility 

and static node environments, providing high 

reliability and efficiency under steady traffic 

patterns. In contrast, the Random Walk model is 

more appropriate for high-mobility environments, 

demonstrating robustness in dynamic conditions and 

varying traffic loads. The LSTM Trust-Based 

protocol consistently performed well across both 

mobility models, indicating its versatility and 

effectiveness in diverse MANET environments. 

However, further optimization for energy efficiency 

and delay reduction is needed to leverage its 

potential in different application scenarios fully. 

4. Conclusion 

The study aimed to enhance routing efficiency in 

MANETs by incorporating an LSTM model trained 

on network traffic features and corresponding trust 

labels into LAR protocol. This integration was 

evaluated under different mobility models Standing 

and Random Walk to understand their impact on 

performance metrics such as PDR, E2E delay, 

Energy consumption, Overhead, and Throughput. 

The LSTM Trust-Based protocol consistently 

demonstrated superior PDR and Throughput across 

both mobility models. In the Standing model, it 

achieved a PDR of 0.95 and Throughput of 8.54, 

while in the Random Walk model, it maintained a 

high PDR and Throughput, achieving 0.35 and 

13.19 respectively during stress tests. However, the 

protocol also showed higher E2E delay and Energy 

consumption, indicating areas for optimization. 

Despite its promising performance, the LSTM 

Trust-Based protocol exhibited significant 

limitations.  

One major limitation is its high Energy 

consumption, particularly evident in the standard 

test with 0% malicious nodes, where it recorded an 

energy usage of 6177.18. This high energy 

requirement limits its applicability in energy-

constrained environments, such as sensor networks. 

Additionally, the protocol's higher E2E delay, 

observed across various scenarios, may affect real-

time applications requiring low latency. The most 

pressing concern is addressing the excessive energy 

consumption of our LSTM-based approach. Future 

work will focus on implementing lightweight 

alternatives such as Gated Recurrent Units (GRUs), 

model pruning techniques, and quantization methods 

to achieve a target 80-90% reduction in energy 

consumption while maintaining acceptable 

performance levels.  

We plan to develop dynamic model selection 

algorithms that can switch between full LSTM 

inference, lightweight models, and rule-based trust 

assessment based on remaining energy levels and 

network conditions. 

While our current study establishes baseline 

performance using Standing and Random Walk 

models, future work will comprehensively evaluate 

more realistic mobility models including: 

• Gauss-Markov Model: For 

scenarios with temporal correlation in 
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movement patterns, applicable to pedestrian 

networks and wildlife monitoring 

• Manhattan Grid Model: For urban 

vehicular environments with structured road 

networks 

• Reference Point Group Mobility 

(RPGM): For disaster recovery and military 

applications where nodes move in 

coordinated groups 

• Smooth Random Mobility: For 

aerial networks and UAV swarms with 

bounded acceleration constraints 

The study also primarily focused on the impact 

of mobility models without extensively exploring 

other environmental factors, such as varying traffic 

loads and different types of malicious attacks 

beyond black hole nodes. 
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