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Abstract

Monkeypox (MPXV) was declared a Public
Health Emergency of International Concern (PHEIC)
by the World Health Organization due to its rapid
global spread and public health impact. This study
proposes a trend-aware prediction model using an
Acrtificial Neural Network (ANN) evaluated under
four schemes: baseline ANN and ANN optimized
using Particle Swarm Optimization (PSO), Harris
Hawks Optimization (HHO), and Genetic Algorithm
(GA). A global cumulative MPXV dataset obtained
from Our World in Data, covering the period from
June 2022 to June 2024, was utilized. Model
performance was evaluated using Root Mean
Squared Error (RMSE) and R-squared (R?).
Experimental results indicate that the ANN-GA
model achieved the best performance, reducing
RMSE by 29.59% from 0.196 to 0.138 and improving
Rz from 0.9936 to 0.9968. These findings
demonstrate  that metaheuristic  optimization,
particularly GA, can effectively enhance ANN
performance for trend-based prediction of global
monkeypox cases and provide a reliable framework
to support public health decision-making.

Keywords: Artificial neural network, Epidemiology
prediction, Genetic Aagorithm, Hyperparameter
optimization, Monkeypox.

1. Introduction

Monkeypox (MPXV) is a zoonotic infectious
disease that has become a global concern. First
identified in monkeys in 1958, MPXV spreads
through direct contact or respiratory droplets and
causes symptoms such as fever, rash, and
lymphadenopathy [1-4]. Although its transmission
rate is lower than COVID-19, global cases have risen
sharply, reaching more than 5,000 by 2020 and
spreading beyond Africa since 2022 [5].
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The absence of specific treatment underscores the
need for accurate predictive tools to support global
mitigation efforts [6].

Artificial intelligence, especially Atrtificial
Neural Networks (ANN), has shown strong
performance in epidemiological modeling, including
COVID-19 forecasting [7-11] and MPXV
classification and prediction [8-14]. A key study [15]
reported that ANN outperformed LSTM and GRU in
forecasting MPXV cases using data from June 2022
to February 2023 [16], but the dataset was limited in
duration and coverage.

To address this gap, the present study uses a
longer and globally comprehensive MPXV dataset
(up to mid-2024) and evaluates ANN performance
enhanced with three metaheuristic optimizers—
Harris Hawks Optimization (HHO), Particle Swarm
Optimization (PSO), and Genetic Algorithm (GA).
These algorithms have previously improved
prediction tasks such as groundwater modeling, air
quality forecasting, and disease classification [17-20].

This research compares the optimization
performance of HHO, PSO, and GA on ANN for
global MPXV prediction by tuning key
hyperparameters and evaluating models using RMSE
and R2. The novelty lies in combining a longer global
dataset with a comparative analysis of three
optimization algorithms, which has rarely been
applied simultaneously in MPXYV forecasting.

2. Related work

Various studies have shown that Artificial Neural
Networks (ANN) play an important role in predicting
infectious diseases, including MPXV. ANN has been
widely applied in forecasting cardiovascular diseases,
air quality, agricultural output, electricity load, and
infectious diseases such as tuberculosis and
monkeypox. These studies highlight the need for
more accurate ANN-based models to support
epidemic mitigation, especially when combined with
optimization algorithms such as Genetic Algorithm
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Figure. 1 Research Framework

(GA), Particle Swarm Optimization (PSO), and
Harris Hawks Optimization (HHO), which have been
shown to significantly enhance model performance.

Al-based epidemiological modeling has grown
rapidly, with ANN demonstrating high accuracy in
predicting COVID-19 cases and mortality in Egypt,
Saudi Arabia, and Pakistan [9-11]. Deep learning
models like VGG16 have also been used to classify
MPXV infections [8], while NAR-ANN has
supported various forecasting tasks. For MPXV
specifically, ANN models using ECDC datasets have
been used to project case growth in several countries
[12], complemented by machine learning—filtering
hybrids [13] and stochastic or time-series approaches
[14].

Key literature also shows that ANN outperformed
LSTM and GRU when predicting MPXV cases using

OWID data from June 2022 to February 2023 [15, 16].

However, these studies were limited by short
timeframes and restricted geographic coverage,
indicating the need for broader global datasets.[15],
[16].

Research on optimization algorithms further
supports  their effectiveness: GA  improved
cardiovascular disease prediction by 5.08% [19],
PSO increased air quality prediction accuracy to
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99.03% [18], and HHO produced strong results in
groundwater and erosion prediction [17]. ANN
combined with PSO or GA has also yielded
improvements in forecasting tuberculosis [20], gold
prices [21], tidal patterns [22], and industrial
production [23]. Additional studies reinforce ANN’s
strong performance across domains such as
electricity load forecasting [24-26], inflation
prediction [27], and water production forecasting.

Thus, based on the literature evidence, the
integration of ANN with HHO, PSO, and GA has
significant potential to improve epidemiological
prediction performance, particularly in MPXV cases.
This study evaluates the optimal hyperparameter
combinations in the ANN model to achieve more
accurate and reliable predictions.

3. Material and method

This research method is designed to build and
evaluate ANN models in predicting MPXV cases
with global data coverage and a longer period. In
addition, this research compares several optimization
algorithms to improve the prediction accuracy of the
model. Fig. 1 illustrates the main stages in the
research process.
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date Andorra Angola Argentina Aruba ... total_cases

0 2022-06-03 0 0 2 [ I 1372
1 2022-06-04 0 0 2 [ 1392
2 2022-06-05 0 0 2 0 1410
3 2022-06-06 0 0 2 0 1504
4 2022-06-07 0 0 3 e .. 1919

Figure. 2 Monkeypox cases

date total_cases

0 2022-06-03 1372
1 2022-06-04 1392
2 2022-06-05 1410
3 2022-06-06 1504
4 2022-08-07 1919

Figure. 3 Data used

3.1 Data acquisition

This study uses time series data obtained from the
official Our World In Data site, which provides open
data on the cumulative number of monkeypox
(Monkeypox Virus — MPXV) cases globally. This
dataset is published openly to support transparency
and collaboration in research related to infectious
diseases. The data is sourced from reports submitted
by each member country and is regularly compiled
for epidemiological analysis and case trend
prediction purposes. Fig. 2 shows the raw
monkeypox case data from around the world before
any preprocessing.

The dataset used in this study has a univariate
time series format, where only one main variable is
observed over time: the total cumulative number of
cases. The observation period for this dataset spans
from June 3, 2022, to June 3, 2024, with a total of 732
observations. The attributes used in this study consist
of two main columns:

a. date: reporting date.

b. total_cases: cumulative number of confirmed

monkeypox cases up to that date.

Fig. 3 shows the first five entries in the dataset used.

To gain an initial understanding of the trend in
case development, a time series graph was visualized
showing the number of cases against the reporting
date. Fig. 4 shows the growth trend in the cumulative
number of global monkeypox cases during the
observation period. A sharp exponential growth
phase was observed between June and October 2022,

INASS Express, Vol. 2, Article No. 1, 2026

Total Cases of Monkeypox

nnnnnn

uuuuuu

nnnnn

&
a*
E
Date

Figure. 4 Growth trend of the cumulative case number

indicating a highly active spread phase. By the end of
2022 to 2023, the growth rate showed a flattening
trend, although the number of cases continued to
increase. Throughout 2023 to mid-2024, case growth
remained stable and linear, reflecting that disease
transmission was still occurring but at a lower
intensity compared to the early stages of the
pandemic.

3.2 Data preprocessing

The global Monkeypox dataset obtained from Our
World in Data contains 732 daily observations of
cumulative MPXV cases spanning from June 3, 2022,
to June 3, 2024. The dataset contains no missing
values, duplicate entries, or gaps in the date sequence,
allowing it to be used directly without imputation.
The date column was converted into a datetime
format, and calendar-based features (day of year,
month, and week of year) were extracted to support
temporal learning

The target variable (total_cases) was separated
from the input features, and Min—Max normalization
was applied to scale all variables into the range [0,1]
to improve training stability. To preserve the
temporal structure of the time series, the dataset was
split chronologically, with the earliest 80% of
observations used for training and the most recent 20
% used for testing, and data shuffling disabled. The
Min-Max scaler was fitted only on the training data
and subsequently applied to the validation and test
sets to avoid information leakage. Model stability
was further evaluated using Time Series Cross
Validation (TimeSeriesSplit) with five folds, which
maintains temporal order by progressively expanding
the training set and validating on subsequent data
segments. All reported evaluation metrics were
computed after inverse transformation to the original
data scale.
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3.3 Data preprocessing
3.3.1. Particle swarm optimization

Particle Swarm Optimization (PSO) is a
population-based optimization algorithm that mimics
the social behavior of swarms in searching for
optimal solutions. This algorithm was first introduced
by Kennedy and Eberhart in 1995 and further
developed in 1997. PSO operates by modeling each
individual in the population as a particle, which
updates its position and velocity based on its personal
best (pbest) and the global best (gbest) of the entire
population. This algorithm mimics the mechanisms
of a colony in finding the fastest path to a food source,
making it applicable to wvarious computational
problems to find efficient solutions [28]. The
movement of each particle is updated based on its
previous velocity and two main components:
individual exploration and global exploration.

Eqg. (1) represents the update of the particle's
velocity in dimension d, Eq. (2) represents the update
of the particle's position in dimension d, and in this
process, fitness is calculated by performing forward
propagation of the ANN model with a combination of
tested hyperparameters. The particle's position here
represents the new hyperparameter values that will be
used to train the ANN model in the next iteration.
This process is used to evaluate the quality of the
model based on its predictive ability

vitt = wofy+ ciri(pbestig — xf4)
+ cory(gbesty — x{4) (1)
xig'h = xig + vig' 2)
w=W _ (Wmax B Wmin) X iter
max iteTnax (3)
Where :
vit! - velocity of particle i in dimension d at
iteration t
xidt : position of particle i in dimension d
pbest; 4 : best individual position
gbest;  : best global position
C1Cy - learning factors
"y : random numbers in the range [0,1]
w : inertia weight
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3.3.2. Harris hawks optimization

The Harris Hawks Optimization (HHO) algorithm
is a population-based optimization algorithm inspired
by the hunting behavior of Harris hawks (Parabuteo
unicinctus), which includes prey search, sudden
attack, and siege. This algorithm consists of two main
phases: exploration and exploitation. Harris hawks
act as candidate solutions, and the best solution is
considered the prey. The optimization process is
carried out through the updating of the hawks'
positions, which are adjusted based on the hunting
strategy used, mathematically optimized to maximize
the search for the best solution.

In the exploration phase, the hawk searches for
solutions using two strategies based on a random
value q. If ¢ > 0.5, the hawk perches near other
individuals to expand the search. If q < 0.5, the eagle
selects a random location to explore further. This
exploration phase aims to expand the search for
solutions, while the exploitation phase is used when
energy |E| < 1, where the eagle will focus on the best
solution found. This strategy is modeled in Eq. (4)
and (5), and Fig. 5 shows the phases of the HHO
optimization algorithm.

X(t+1)
Xrand (t) - n |Xrand(t) - erX(t)ll
_ q=0.5
B (Xrabbit(t) - Xm(t)) - T3(LB + T4(UB - LB)),
q <05
(4)
Where :
Xrand : Random position in the search
space
Xrabbbit : Best position found (prey)
Xm : Average position of the eagle
population
LB, UB : Lower and upper search limits

I, Iz, I3, s, q : Random parameters in the
interval [0,1]

The average position of the eagle is calculated in the
interval [0,1]

N
Kn®) = 3 Y 10 ®)

where N is the total population of eagles.

Next, the exploitation phase is performed when
the energy E satisfies |E| < 1. The energy value is
calculated as follows: using Eg. (6).
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Figure. 5 Phase of the HHO algorithm [29]

E = 2£(1 - ;) ©)

t is the current iteration, and T is the maximum
number of iterations. T and Eo take values between -
1 and 1, indicating that the prey's energy decreases as
it escapes. If |E| > 1, the eagles search for a new area
(exploration), while if |E| < 1, they exploit the
existing solution environment. When |E| > 0.5, the
prey can still escape, so a soft besiege is applied. If
|E| < 0.5, the prey is too exhausted to escape, so the
Harris hawk applies a strict, hard besiege before
launching the final attack. Iterations continue until
the termination condition is met, such as the
maximum number of iterations or convergence of the
best solution. The final result is the best location
found by the hawk and the associated fitness value
[29].

3.3.3. Genetic algorithm

Genetic Algorithm (GA) is an evolutionary
optimization algorithm inspired by Darwin's theory
of natural selection, which emphasizes natural

Parents

Selection
Parents
initialization

Crossover
Popolation Mutation

g Offsprings

Supervivor

—

stop algorithm se—

Selection

Figure. 6 Genetic algorithm process [30]
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selection [31]. GA is used to explore the solution
space of a problem through evolutionary stages such
as selection, crossover, and mutation to obtain the
best solution.

The GA process begins with the formation of
chromosomes and populations. Chromosomes
represent potential solutions in the form of genes,
which can be binary numbers, real numbers, or
permutations. A set of chromosomes forms a
population, and the population size is determined by
initial parameters. Each chromosome is then
evaluated using a fitness function to assess how well
the solution addresses the problem the higher the
fitness value, the better the solution.

Next, the two best chromosomes are selected
through the parent selection process for reproduction.
This reproduction process includes crossover, which
involves combining two parents to produce new
offspring, and mutation, which randomly alters gene
values to maintain solution diversity. The next stage
is survivor selection, which involves selecting the
best individuals from the previous population and
offspring to form a new generation. This process is
repeated until an optimal solution is achieved, fitness
converges, or the iteration reaches its maximum limit
[30].

3.4 Modelling

Fig. 7 illustrates the Artificial Neural Network
(ANN) architecture used in this study. The model
adopts a simple feedforward structure with one
hidden layer containing 64 neurons using a ReLU
activation function, and a single output neuron for
predicting the next value of MPXV cases. The
baseline model is trained using Mean Squared Error
(MSE) as the loss function..

To enhance predictive accuracy, the ANN is
further optimized using three metaheuristic
algorithms—~Particle Swarm Optimization (PSO),
Harris Hawks Optimization (HHO), and Genetic

Input layer (i)

Hidden layer (j) Output layer (k)

Input 1

Output

Input 1

H Feedforward pass

Backward pass

Figure. 7 ANN structure [32]
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Table 1. Scheme model

Scheme | Algorithm Parameters Optimized Hyperparameters
1 ANN 1 hidden layer, 64 neurons (ReLU) Custom parameter baseline
Baseline Output layer: 1 neuron (linear)
Optimizer: Adam (default)

- Loss: MSE

- Epoch: 100

- Batch Size: 32

- Learning Rate:; 0.001

- Callback:

- EarlyStopping (patience=10)
2 ANN-PSO - Particles: 10 - Number of neurons: 8 —

- lterations: 10 128

- Inertia weight: 0.5 - Learning rate: 0.0001 -

- Learning factor;: c1=1.5,c2=15 0.01

- Fitness: RMSE - Batch size: 16 — 64

- Number of layers: 1-3

3 ANN-HHO - Hawks: 10 - Number of neurons: 8 —

- lterations: 10 128

- Strategy: Soft/Hard besiege + Rapid dives - Learning rate: 0.0001 -

- Initial energy Eo € [-1, 1] 0.01

- Fitness: RMSE - Batch size: 16 — 64

- Number of layers: 1 -3

4 ANN-GA - Population: 10 - Number of neurons: 8 —

- Generation: 10 128

- Parent selection: 4 best - Learning rate: 0.0001 -

- Crossover: 1 random point 0.01

- Mutation rate: 0.1 - Batch size: 16 — 64

- Fitness: RMSE - Number of layers: 1 - 3

Algorithm (GA). These optimizers search for the best
hyperparameters, including the number of neurons,
learning rate, and batch size. Four model schemes,
including the baseline and the three optimized
versions, are compared as summarized in Table 1.

3.5 Evaluation

The evaluation assesses how accurately the
model predicts MPXV cases compared to actual data.
Two metrics are used: Root Mean Squared Error
(RMSE) and R-Squared (R?). RMSE measures the
average difference between predicted and actual

values, where smaller values indicate higher accuracy.

R2 represents the proportion of variance in the actual
data explained by the model, with values closer to 1
indicating excellent predictive performance. The
mathematical formulas for these two metrics are
listed in Egs. (7) and (8). All RMSE and R? values
reported in this study were calculated on
denormalized (original-scale) data after inverse
transformation to ensure meaningful interpretation of
prediction errors.

RMSE = 13,07 = y")? O
_ 4 2y’ 8
RZ= 1 Sy ®)
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Where :

Vi : actual value

y" - predicted value

y~ : average value of actual values
n : number of data points

4. Result and discussion

This study formulates the prediction task as a
trend-aware estimation of cumulative MPXV cases
rather than short-horizon autoregressive forecasting.
Calendar-based temporal features are employed to
capture long-term epidemic dynamics, while lag-
based inputs are intentionally excluded to ensure a
consistent and fair comparison of metaheuristic
optimization algorithms within the same ANN
framework.

After baseline model training is complete, ANN
model optimization is carried out using three
metaheuristic algorithms, namely GA, PSO, and
HHO. This optimization focuses on finding the best
hyperparameter ~ values to improve  model
performance. The best hyperparameter combination
obtained from each algorithm can be seen in Table 2.
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Table 2. Best hyperparameter

Number . Number
Scheme of Learning Ba}tch _of
Rate Size Hidden
Neurons
Layers
1 64 0.001 32 1
2 128 0.000717 27 1
3 116 0.000100 44 1
4 86 0.001176 42 1
Table 3. Evaluation of each model
Scheme RMSE R2
1 0.196 0.9936
2 0.265 0.9883
3 0.271 0.9877
4 0.138 0.9968

The hyperparameter is obtained based on the
evaluation of the lowest fitness value (RMSE) during
the training and validation process. This
configuration is then used to rebuild the ANN model
with the best performance from each optimization
algorithm. After optimization is completed, each
optimized model is then evaluated using three main
metrics, namely RMSE and R2. The evaluation results
of each tested model are presented in Table 3.

After the baseline model training is completed,
ANN optimization is performed using three
metaheuristic algorithms: GA, PSO, and HHO. The
optimization process aims to identify the optimal
hyperparameter configurations that minimize RMSE
during training and validation, as summarized in
Table 2. The resulting configurations are then used to
reconstruct each optimized ANN model for final
evaluation.

The evaluation results, presented in Table 3,
indicate that the baseline ANN model achieves an
RMSE of 0.196 with an R2 of 0.9936, demonstrating
a strong ability to capture the overall trend of MPXV
case progression. However, the relatively higher
RMSE suggests limited precision in quantitative
estimation.

Among the optimized models, ANN-PSO and
ANN-HHO yield RMSE values of 0.265 and 0.271,
respectively, with R? values above 0.98. Although
these models maintain strong trend representation,
their higher RMSE values compared to the baseline
indicate reduced accuracy in estimating extreme
values, likely due to extensive exploration during
optimization. In contrast, the ANN-GA model
achieves the best performance, with an RMSE of
0.138 and an R2Z of 0.9968, indicating superior
accuracy and robustness in reproducing the actual
data pattern.
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Fig. 8 illustrates the training and validation loss
curves of the ANN-GA model, showing stable
convergence without overfitting. Fig. 9 compares the
actual and predicted values on the test set, where the
predictions closely follow the observed trend,
confirming excellent generalization performance.

Furthermore, the results will be compared with
several previous studies that also discuss the
prediction of monkeypox cases, to see how
competitive the performance of the proposed model
is compared to other approaches, both in terms of
methods, data coverage, and evaluation metrics used.
Table 4 below presents a comparison of the
prediction performance of this research with previous
relevant studies.

As shown in Table 4, the RMSE values obtained
in this study are consistently lower than those
reported in previous works. This improvement can be
attributed to the longer observation period used (June
2022-June 2024), which enables the model to learn
more complete epidemic trends compared to earlier
studies limited to data up to February 2023.
Consequently, the lower RMSE values reflect
enhanced trend learning rather than anomalous
performance.

5. Conclusions

This study presents a comparative analysis of
metaheuristic optimization algorithms for enhancing
ANN performance in predicting global cumulative
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Table. 4 Comparison of research results

Research Title Dataset Model | Optimization | RMSE R2
Machine Learning In Epidemiology: ANN | Levenberg 1.053 | 0.9999
Neural  Networks Forecasting Of | Our World in Marquardt
[33] | Monkeypox Cases Data (June — (LM)
Feb 2023) GRU 1.249 | 0.9980
LSTM 1.204 | 0.9988
A Comprehensive Analysis Of The ANN | Levenberg 1.74 0.9999
Artificial Neural Networks Model For | Our World in Marquardt
[15] Predicting Monkeypox Outbreaks Data (June — (LM)
Feb 2023) LSTM 1.75 0.9976
GRU 1.76 0.9980
Comparative Analysis of Optimization | Our World in - 0.196 | 0.9936
This Algorithms for Enhancing Artificial | Data ( June ANN HHO 0.271 | 0.9877
research | Neural Network Accuracy in Predicting | 2022-  June PSO 0.265 | 0.9883
Global Monkeypox Cases 2024) GA 0.138 | 0.9968

MPXYV cases using a long-term dataset spanning June
2022 to June 2024. Experimental results demonstrate
that Genetic Algorithm (GA) provides the most
effective optimization, achieving the lowest RMSE
(0.138) and the highest R2 (0.9968), outperforming
both the baseline ANN and models optimized using
PSO and HHO. The findings confirm that
metaheuristic optimization does not uniformly
improve performance across all metrics, and that GA
is particularly effective in refining ANN

hyperparameters for trend-aware epidemic prediction.

Although lag-based inputs were not incorporated in
this study, the proposed framework provides a fair
and consistent basis for evaluating optimization
strategies, and can be extended in future work to
support short-term forecasting tasks.
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