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Abstract 

Monkeypox (MPXV) was declared a Public 

Health Emergency of International Concern (PHEIC) 

by the World Health Organization due to its rapid 

global spread and public health impact. This study 

proposes a trend-aware prediction model using an 

Artificial Neural Network (ANN) evaluated under 

four schemes: baseline ANN and ANN optimized 

using Particle Swarm Optimization (PSO), Harris 

Hawks Optimization (HHO), and Genetic Algorithm 

(GA). A global cumulative MPXV dataset obtained 

from Our World in Data, covering the period from 

June 2022 to June 2024, was utilized. Model 

performance was evaluated using Root Mean 

Squared Error (RMSE) and R-squared (R²). 

Experimental results indicate that the ANN-GA 

model achieved the best performance, reducing 

RMSE by 29.59% from 0.196 to 0.138 and improving 

R² from 0.9936 to 0.9968. These findings 

demonstrate that metaheuristic optimization, 

particularly GA, can effectively enhance ANN 

performance for trend-based prediction of global 

monkeypox cases and provide a reliable framework 

to support public health decision-making. 

 

Keywords: Artificial neural network, Epidemiology 

prediction,  Genetic Aagorithm, Hyperparameter 

optimization, Monkeypox. 

1. Introduction 

Monkeypox (MPXV) is a zoonotic infectious 

disease that has become a global concern. First 

identified in monkeys in 1958, MPXV spreads 

through direct contact or respiratory droplets and 

causes symptoms such as fever, rash, and 

lymphadenopathy [1-4]. Although its transmission 

rate is lower than COVID-19, global cases have risen 

sharply, reaching more than 5,000 by 2020 and 

spreading beyond Africa since 2022 [5].  

 

The absence of specific treatment underscores the 

need for accurate predictive tools to support global 

mitigation efforts [6]. 

Artificial intelligence, especially Artificial 

Neural Networks (ANN), has shown strong 

performance in epidemiological modeling, including 

COVID-19 forecasting [7-11] and MPXV 

classification and prediction [8-14]. A key study [15] 

reported that ANN outperformed LSTM and GRU in 

forecasting MPXV cases using data from June 2022 

to February 2023 [16], but the dataset was limited in 

duration and coverage. 

To address this gap, the present study uses a 

longer and globally comprehensive MPXV dataset 

(up to mid-2024) and evaluates ANN performance 

enhanced with three metaheuristic optimizers—

Harris Hawks Optimization (HHO), Particle Swarm 

Optimization (PSO), and Genetic Algorithm (GA). 

These algorithms have previously improved 

prediction tasks such as groundwater modeling, air 

quality forecasting, and disease classification [17-20]. 

This research compares the optimization 

performance of HHO, PSO, and GA on ANN for 

global MPXV prediction by tuning key 

hyperparameters and evaluating models using RMSE 

and R². The novelty lies in combining a longer global 

dataset with a comparative analysis of three 

optimization algorithms, which has rarely been 

applied simultaneously in MPXV forecasting. 

2. Related work 

Various studies have shown that Artificial Neural 

Networks (ANN) play an important role in predicting 

infectious diseases, including MPXV. ANN has been 

widely applied in forecasting cardiovascular diseases, 

air quality, agricultural output, electricity load, and 

infectious diseases such as tuberculosis and 

monkeypox. These studies highlight the need for 

more accurate ANN-based models to support 

epidemic mitigation, especially when combined with 

optimization algorithms such as Genetic Algorithm 
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Figure. 1 Research Framework 

 

(GA), Particle Swarm Optimization (PSO), and 

Harris Hawks Optimization (HHO), which have been 

shown to significantly enhance model performance. 

AI-based epidemiological modeling has grown 

rapidly, with ANN demonstrating high accuracy in 

predicting COVID-19 cases and mortality in Egypt, 

Saudi Arabia, and Pakistan [9-11]. Deep learning 

models like VGG16 have also been used to classify 

MPXV infections [8], while NAR-ANN has 

supported various forecasting tasks. For MPXV 

specifically, ANN models using ECDC datasets have 

been used to project case growth in several countries 

[12], complemented by machine learning–filtering 

hybrids [13] and stochastic or time-series approaches 

[14]. 

Key literature also shows that ANN outperformed 

LSTM and GRU when predicting MPXV cases using 

OWID data from June 2022 to February 2023 [15, 16]. 

However, these studies were limited by short 

timeframes and restricted geographic coverage, 

indicating the need for broader global datasets.[15], 

[16]. 

Research on optimization algorithms further 

supports their effectiveness: GA improved 

cardiovascular disease prediction by 5.08% [19], 

PSO increased air quality prediction accuracy to 

99.03% [18], and HHO produced strong results in 

groundwater and erosion prediction [17]. ANN 

combined with PSO or GA has also yielded 

improvements in forecasting tuberculosis [20], gold 

prices [21], tidal patterns [22], and industrial 

production [23]. Additional studies reinforce ANN’s 

strong performance across domains such as 

electricity load forecasting [24-26], inflation 

prediction [27], and water production forecasting. 

Thus, based on the literature evidence, the 

integration of ANN with HHO, PSO, and GA has 

significant potential to improve epidemiological 

prediction performance, particularly in MPXV cases. 

This study evaluates the optimal hyperparameter 

combinations in the ANN model to achieve more 

accurate and reliable predictions. 

3. Material and method 

This research method is designed to build and 

evaluate ANN models in predicting MPXV cases 

with global data coverage and a longer period. In 

addition, this research compares several optimization 
algorithms to improve the prediction accuracy of the 

model. Fig. 1  illustrates the main stages in the 

research process. 
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Figure. 2 Monkeypox cases 

 

 

 
Figure. 3 Data used 

 

3.1 Data acquisition 

This study uses time series data obtained from the 

official Our World In Data site, which provides open 

data on the cumulative number of monkeypox 

(Monkeypox Virus – MPXV) cases globally. This 

dataset is published openly to support transparency 

and collaboration in research related to infectious 

diseases. The data is sourced from reports submitted 

by each member country and is regularly compiled 

for epidemiological analysis and case trend 

prediction purposes. Fig. 2 shows the raw 

monkeypox case data from around the world before 

any preprocessing. 

The dataset used in this study has a univariate 

time series format, where only one main variable is 

observed over time: the total cumulative number of 

cases. The observation period for this dataset spans 

from June 3, 2022, to June 3, 2024, with a total of 732 

observations. The attributes used in this study consist 

of two main columns: 

a. date: reporting date. 

b. total_cases: cumulative number of confirmed 

monkeypox cases up to that date. 

Fig. 3 shows the first five entries in the dataset used. 

To gain an initial understanding of the trend in 

case development, a time series graph was visualized 

showing the number of cases against the reporting 

date. Fig. 4 shows the growth trend in the cumulative 

number of global monkeypox cases during the 

observation period. A sharp exponential growth 

phase was observed between June and October 2022,  

 

 
Figure. 4 Growth trend of the cumulative case number 

 

 

indicating a highly active spread phase. By the end of 

2022 to 2023, the growth rate showed a flattening 

trend, although the number of cases continued to 

increase. Throughout 2023 to mid-2024, case growth 

remained stable and linear, reflecting that disease 

transmission was still occurring but at a lower 

intensity compared to the early stages of the 

pandemic. 

3.2 Data preprocessing 

The global Monkeypox dataset obtained from Our 

World in Data contains 732 daily observations of 

cumulative MPXV cases spanning from June 3, 2022, 

to June 3, 2024. The dataset contains no missing 

values, duplicate entries, or gaps in the date sequence, 

allowing it to be used directly without imputation. 

The date column was converted into a datetime 

format, and calendar-based features (day of year, 

month, and week of year) were extracted to support 

temporal learning 

The target variable (total_cases) was separated 

from the input features, and Min–Max normalization 

was applied to scale all variables into the range [0,1] 

to improve training stability. To preserve the 

temporal structure of the time series, the dataset was 

split chronologically, with the earliest 80% of 

observations used for training and the most recent 20 

% used for testing, and data shuffling disabled. The 

Min–Max scaler was fitted only on the training data 

and subsequently applied to the validation and test 

sets to avoid information leakage. Model stability 

was further evaluated using Time Series Cross 

Validation (TimeSeriesSplit) with five folds, which 

maintains temporal order by progressively expanding 

the training set and validating on subsequent data 

segments. All reported evaluation metrics were 

computed after inverse transformation to the original 

data scale. 
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3.3 Data preprocessing 

3.3.1. Particle swarm optimization 

Particle Swarm Optimization (PSO) is a 

population-based optimization algorithm that mimics 

the social behavior of swarms in searching for 

optimal solutions. This algorithm was first introduced 

by Kennedy and Eberhart in 1995 and further 

developed in 1997. PSO operates by modeling each 

individual in the population as a particle, which 

updates its position and velocity based on its personal 

best (pbest) and the global best (gbest) of the entire 

population. This algorithm mimics the mechanisms 

of a colony in finding the fastest path to a food source, 

making it applicable to various computational 

problems to find efficient solutions [28]. The 

movement of each particle is updated based on its 

previous velocity and two main components: 

individual exploration and global exploration.  

Eq. (1) represents the update of the particle's 

velocity in dimension d, Eq. (2) represents the update 

of the particle's position in dimension d, and in this 

process, fitness is calculated by performing forward 

propagation of the ANN model with a combination of 

tested hyperparameters. The particle's position here 

represents the new hyperparameter values that will be 

used to train the ANN model in the next iteration. 

This process is used to evaluate the quality of the 

model based on its predictive ability 

 

𝑣𝑖,𝑑
𝑡+1 =  𝑤 𝑣𝑖,𝑑

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖,𝑑 − 𝑥𝑖,𝑑
𝑡 )

+ 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖,𝑑
𝑡 ) (1) 

 

𝑥𝑖,𝑑
𝑡+1 = 𝑥𝑖,𝑑

𝑡 + 𝑣𝑖,𝑑
𝑡+1 (2) 

 

𝑤 = 𝑊𝑚𝑎𝑥 −
(𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛) x 𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 

(3) 

 

Where :  

 

𝑣𝑖,𝑑
𝑡+1      : velocity of particle i in dimension d at  

                     iteration t 

𝑥𝑖,𝑑
𝑡+1      : position of particle i in dimension d 

𝑝𝑏𝑒𝑠𝑡𝑖,𝑑    : best individual position 

𝑔𝑏𝑒𝑠𝑡𝑑      : best global position 

𝑐1𝑐2      : learning factors 

𝑟1𝑟2      : random numbers in the range [0,1] 

𝑤      : inertia weight 

 

3.3.2. Harris hawks optimization 

The Harris Hawks Optimization (HHO) algorithm 

is a population-based optimization algorithm inspired 

by the hunting behavior of Harris hawks (Parabuteo 

unicinctus), which includes prey search, sudden 

attack, and siege. This algorithm consists of two main 

phases: exploration and exploitation. Harris hawks 

act as candidate solutions, and the best solution is 

considered the prey. The optimization process is 

carried out through the updating of the hawks' 

positions, which are adjusted based on the hunting 

strategy used, mathematically optimized to maximize 

the search for the best solution. 

In the exploration phase, the hawk searches for 

solutions using two strategies based on a random 

value q. If q ≥ 0.5, the hawk perches near other 

individuals to expand the search. If q < 0.5, the eagle 

selects a random location to explore further. This 

exploration phase aims to expand the search for 

solutions, while the exploitation phase is used when 

energy |E| < 1, where the eagle will focus on the best 

solution found. This strategy is modeled in Eq. (4) 

and (5), and Fig. 5 shows the phases of the HHO 

optimization algorithm. 

 

𝑋(𝑡 + 1)

=

{
 

 
𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1 |𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|,

 𝑞 ≥ 0.5

(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)),

 𝑞 < 0.5

 

(4)     

 

Where :  

 

Xrand     : Random position in the search  

                        space 

Xrabbbit      : Best position found (prey) 

Xm      : Average position of the eagle  

                         population 

LB, UB     : Lower and upper search limits 

r1, r2, r3, r4, q : Random parameters in the  

                         interval [0,1] 

 

The average position of the eagle is calculated in the 

interval [0,1] 

 

𝑋𝑚(𝑡) =  
1

𝑁
∑𝑥𝑖(𝑡)

𝑁

𝑖=1

 (5) 

 

where N is the total population of eagles.  

Next, the exploitation phase is performed when 

the energy E satisfies ∣E∣ < 1. The energy value is 

calculated as follows: using Eq. (6). 
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Figure. 5 Phase of the HHO algorithm [29] 

 

 𝐸 =  2𝐸0 (1 − 
𝑡

𝑇
)            (6) 

 

t is the current iteration, and T is the maximum 

number of iterations. T and E₀ take values between -

1 and 1, indicating that the prey's energy decreases as 

it escapes. If |E| ≥ 1, the eagles search for a new area 

(exploration), while if |E| < 1, they exploit the 

existing solution environment. When |E| ≥ 0.5, the 

prey can still escape, so a soft besiege is applied. If 

|E| < 0.5, the prey is too exhausted to escape, so the 

Harris hawk applies a strict, hard besiege before 

launching the final attack. Iterations continue until 

the termination condition is met, such as the 

maximum number of iterations or convergence of the 

best solution. The final result is the best location 

found by the hawk and the associated fitness value 

[29]. 

3.3.3. Genetic algorithm 

Genetic Algorithm (GA) is an evolutionary 

optimization algorithm inspired by Darwin's theory 

of natural selection, which emphasizes natural 

 

 
Figure. 6 Genetic algorithm process [30] 

 

selection [31]. GA is used to explore the solution 

space of a problem through evolutionary stages such 

as selection, crossover, and mutation to obtain the 

best solution.  

The GA process begins with the formation of 

chromosomes and populations. Chromosomes 

represent potential solutions in the form of genes, 

which can be binary numbers, real numbers, or 

permutations. A set of chromosomes forms a 

population, and the population size is determined by 

initial parameters. Each chromosome is then 

evaluated using a fitness function to assess how well 

the solution addresses the problem the higher the 

fitness value, the better the solution. 

Next, the two best chromosomes are selected 

through the parent selection process for reproduction. 

This reproduction process includes crossover, which 

involves combining two parents to produce new 

offspring, and mutation, which randomly alters gene 

values to maintain solution diversity. The next stage 

is survivor selection, which involves selecting the 

best individuals from the previous population and 

offspring to form a new generation. This process is 

repeated until an optimal solution is achieved, fitness 

converges, or the iteration reaches its maximum limit 

[30]. 

3.4 Modelling 

Fig. 7 illustrates the Artificial Neural Network 

(ANN) architecture used in this study. The model 

adopts a simple feedforward structure with one 

hidden layer containing 64 neurons using a ReLU 

activation function, and a single output neuron for 

predicting the next value of MPXV cases. The 

baseline model is trained using Mean Squared Error 

(MSE) as the loss function.. 

To enhance predictive accuracy, the ANN is 

further optimized using three metaheuristic 

algorithms—Particle Swarm Optimization (PSO), 

Harris Hawks Optimization (HHO), and Genetic 

 

 
Figure. 7 ANN structure [32] 
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Table 1. Scheme model 

Scheme Algorithm Parameters Optimized Hyperparameters 

1 ANN 

Baseline 

- 1 hidden layer, 64 neurons (ReLU) 
- Output layer: 1 neuron (linear) 
- Optimizer: Adam (default) 
- Loss: MSE 
- Epoch: 100 
- Batch Size: 32 
- Learning Rate: 0.001 
- Callback: 
- EarlyStopping (patience=10) 

Custom parameter baseline 

2 ANN-PSO - Particles: 10 
- Iterations: 10 
- Inertia weight: 0.5 
- Learning factor: c1 = 1.5, c2 = 1.5 
- Fitness: RMSE  

- Number of neurons: 8 – 
128 

- Learning rate: 0.0001 - 
0.01 

- Batch size: 16 – 64 
- Number of layers: 1 - 3 

3 ANN-HHO - Hawks: 10 
- Iterations: 10 
- Strategy: Soft/Hard besiege + Rapid dives 
- Initial energy E₀ ∈ [-1, 1] 
- Fitness: RMSE 

- Number of neurons: 8 – 
128 

- Learning rate: 0.0001 - 
0.01 

- Batch size: 16 – 64 
- Number of layers: 1 - 3 

4 ANN-GA - Population: 10 
- Generation: 10 
- Parent selection: 4 best 
- Crossover: 1 random point 
- Mutation rate: 0.1 
- Fitness: RMSE 

- Number of neurons: 8 – 
128 

- Learning rate: 0.0001 - 
0.01 

- Batch size: 16 – 64 
- Number of layers: 1 - 3 

 

 

Algorithm (GA). These optimizers search for the best 

hyperparameters, including the number of neurons, 

learning rate, and batch size. Four model schemes, 

including the baseline and the three optimized 

versions, are compared as summarized in Table 1. 

3.5 Evaluation 

The evaluation assesses how accurately the 

model predicts MPXV cases compared to actual data. 

Two metrics are used: Root Mean Squared Error 

(RMSE) and R-Squared (R²). RMSE measures the 

average difference between predicted and actual 

values, where smaller values indicate higher accuracy. 

R² represents the proportion of variance in the actual 

data explained by the model, with values closer to 1 

indicating excellent predictive performance. The 

mathematical formulas for these two metrics are 

listed in Eqs. (7) and (8). All RMSE and R² values 

reported in this study were calculated on 

denormalized (original-scale) data after inverse 

transformation to ensure meaningful interpretation of 

prediction errors. 

 

RMSE = √
1

𝑛
∑ (𝑦𝑖
𝑛
𝑖=1 − 𝑦^)2 (7) 

 

R2 = 1- 
∑(𝑦𝑖−𝑦^)

2

∑(𝑦𝑖−𝑦
−)2

 (8) 

 
Where : 

 

𝑦𝑖 : actual value 

𝑦^ : predicted value 

𝑦− : average value of actual values 

n  : number of data points 

 

4. Result and discussion 

This study formulates the prediction task as a 

trend-aware estimation of cumulative MPXV cases 

rather than short-horizon autoregressive forecasting. 

Calendar-based temporal features are employed to 

capture long-term epidemic dynamics, while lag-

based inputs are intentionally excluded to ensure a 

consistent and fair comparison of metaheuristic 

optimization algorithms within the same ANN 

framework. 

After baseline model training is complete, ANN 

model optimization is carried out using three 

metaheuristic algorithms, namely GA, PSO, and 

HHO. This optimization focuses on finding the best 

hyperparameter values to improve model 

performance. The best hyperparameter combination 

obtained from each algorithm can be seen in Table 2. 
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Table 2. Best hyperparameter 

Scheme 

Number 

of 

Neurons 

Learning 

Rate 

Batch 

Size 

Number 

of 

Hidden 

Layers 

1 64 0.001 32 1 

2 128 0.000717 27 1 

3 116 0.000100 44 1 

4 86 0.001176 42 1 

 
Table 3. Evaluation of each model 

Scheme RMSE R² 

1 0.196 0.9936 

2 0.265 0.9883 

3 0.271 0.9877 

4 0.138 0.9968 

 

 

The hyperparameter is obtained based on the 

evaluation of the lowest fitness value (RMSE) during 

the training and validation process. This 

configuration is then used to rebuild the ANN model 

with the best performance from each optimization 

algorithm. After optimization is completed, each 

optimized model is then evaluated using three main 

metrics, namely RMSE and R². The evaluation results 

of each tested model are presented in Table 3. 

After the baseline model training is completed, 

ANN optimization is performed using three 

metaheuristic algorithms: GA, PSO, and HHO. The 

optimization process aims to identify the optimal 

hyperparameter configurations that minimize RMSE 

during training and validation, as summarized in 

Table 2. The resulting configurations are then used to 

reconstruct each optimized ANN model for final 

evaluation. 

The evaluation results, presented in Table 3, 

indicate that the baseline ANN model achieves an 

RMSE of 0.196 with an R² of 0.9936, demonstrating 

a strong ability to capture the overall trend of MPXV 

case progression. However, the relatively higher 

RMSE suggests limited precision in quantitative 

estimation. 

Among the optimized models, ANN-PSO and 

ANN-HHO yield RMSE values of 0.265 and 0.271, 

respectively, with R² values above 0.98. Although 

these models maintain strong trend representation, 

their higher RMSE values compared to the baseline 

indicate reduced accuracy in estimating extreme 

values, likely due to extensive exploration during 

optimization. In contrast, the ANN-GA model 

achieves the best performance, with an RMSE of 

0.138 and an R² of 0.9968, indicating superior 

accuracy and robustness in reproducing the actual 

data pattern. 

 

 
Figure. 8 Training & loss validation ANN-GA 

 

 

 
Figure. 9 Actual and predicted comparison on ANN-GA 

 

 

Fig. 8 illustrates the training and validation loss 

curves of the ANN-GA model, showing stable 

convergence without overfitting. Fig. 9 compares the 

actual and predicted values on the test set, where the 

predictions closely follow the observed trend, 

confirming excellent generalization performance. 

Furthermore, the results will be compared with 

several previous studies that also discuss the 

prediction of monkeypox cases, to see how 

competitive the performance of the proposed model 

is compared to other approaches, both in terms of 

methods, data coverage, and evaluation metrics used. 

Table 4 below presents a comparison of the 

prediction performance of this research with previous 

relevant studies.  

As shown in Table 4, the RMSE values obtained 

in this study are consistently lower than those 

reported in previous works. This improvement can be 

attributed to the longer observation period used (June 

2022–June 2024), which enables the model to learn 

more complete epidemic trends compared to earlier 

studies limited to data up to February 2023. 

Consequently, the lower RMSE values reflect 

enhanced trend learning rather than anomalous 

performance. 

5. Conclusions 

This study presents a comparative analysis of 

metaheuristic optimization algorithms for enhancing 

ANN performance  in  predicting  global  cumulative 
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Table. 4 Comparison of research results 

Research Title Dataset Model Optimization RMSE R2 

[33] 

Machine Learning In Epidemiology: 

Neural Networks Forecasting Of 

Monkeypox Cases 
Our World in 

Data (June – 

Feb 2023) 

ANN Levenberg 

Marquardt 

(LM) 

1.053 0.9999 

GRU  1.249 0.9980 

LSTM  1.204 0.9988 

[15] 

A Comprehensive Analysis Of The 

Artificial Neural Networks Model For 

Predicting Monkeypox Outbreaks 
Our World in 

Data (June – 

Feb 2023) 

ANN Levenberg 

Marquardt 

(LM) 

1.74 0.9999 

LSTM  1.75 0.9976 

GRU  1.76 0.9980 

This 

research 

Comparative Analysis of Optimization 

Algorithms for Enhancing Artificial 

Neural Network Accuracy in Predicting 

Global Monkeypox Cases 

Our World in 

Data ( June 

2022- June 

2024) 

ANN 

- 0.196 0.9936 

HHO 0.271 0.9877 

PSO 0.265 0.9883 

GA 0.138 0.9968 

 

MPXV cases using a long-term dataset spanning June 

2022 to June 2024. Experimental results demonstrate 

that Genetic Algorithm (GA) provides the most 

effective optimization, achieving the lowest RMSE 

(0.138) and the highest R² (0.9968), outperforming 

both the baseline ANN and models optimized using 

PSO and HHO. The findings confirm that 

metaheuristic optimization does not uniformly 

improve performance across all metrics, and that GA 

is particularly effective in refining ANN 

hyperparameters for trend-aware epidemic prediction. 

Although lag-based inputs were not incorporated in 

this study, the proposed framework provides a fair 

and consistent basis for evaluating optimization 

strategies, and can be extended in future work to 

support short-term forecasting tasks. 
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